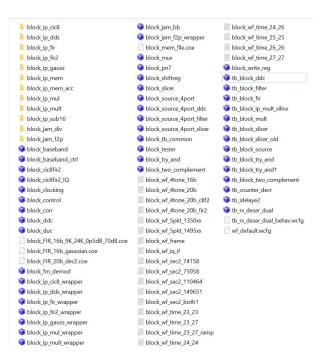

Signal Disruption of AIS

- Understood task requirement through architecture research and study
- Setup python environment to simulate signal chain
- HDL coding of filtering, decimation, down-conversion, timing recovery and etc


Firmware Architecture of Signal Disruptor

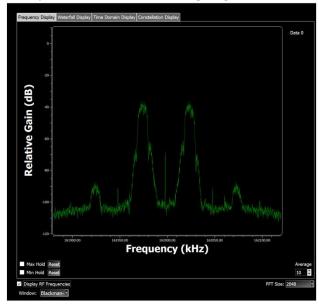
Results of Signal Recovery Simulation using Xilinx Vivado

- Synthesis and implementation of design to hardware
- Software (C coding) to coordinate actions of various hardware modules.

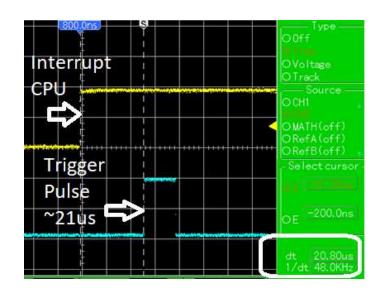
```
R routines h #
 62 void block_int_bin(unsigned int in, int count, int* out);
 63 int block_bin_int(int count, int* out);
  64 unsigned int block_freq_to_nco(int freq);
  65 int block_check_jam_list(int mmsi);
  66 void block_update_ddc(struct block_bb *p);
  67 void block_write_ddc(struct block_bb *p);
  68 void block handler(struct block bb *p):
  69 void block_extract_mmsi(struct block_bb *pter, int quite);
  70 void block_jam(char ch);
  71 void st_led_on(int led_no);
  72 void st_led_off(int led_no);
  73 void st_led_on_off(int led_no, int ms_duration);
  74 int st_read_pb(int pb_no);
  76 void IntrHandling_block_H(void *callback_func);
  77 void IntrHandling_block_L(void *callback_func);
 71 void block_get_jam_list(double* param, int param_no);
 72 void block_set_jam_list(double* param, int param_no);
 74 void block_get_bb_freq(double* param, int param_no);
 75 void block set bb freq(double* param, int param no);
 76 void block_get_test(double* param, int param_no);
 77 void block_set_test(double* param, int param_no);
 78 void block get scan(double* param, int param no);
 79 void block set scan(double* param, int param no);
 80 void block_scan_start(double* param, int param_no);
 81 void block stat(double* param, int param no);
82 void block_demo(double* param, int param_no);
 83 void st_run1(double* param, int param_no);
 84 void st_run2(double* param, int param_no);
```


Software Modules Developed

HDL Modules Developed


- Trade-offs between firmware and software to deliver on time
- Inserted module for disruption

User Console
In Jamming Mode


RF Spectrum of Jamming Signal

Essential modules completed. Demo to be conducted

Latency:

- CPU Core running at 800MHz.
- 1000 C code statement with 10 clk per statement, processing time require is 12.5us.
- 1 bit duration is ~100us. Latency not an issue and hence processing should be done on software.

