Objective:

- \* Digital Lab Revision
- a) From the 3-bit state machine state transition diagram shown in Figure 13.1, fill in the state transition table.



Figure 13.1 State Transition Diagram

| Present State |    |    | Next State |     |     |
|---------------|----|----|------------|-----|-----|
| Q2            | Q1 | Q0 | Q2*        | Q1* | Q0* |
|               |    |    |            |     |     |
| 0             | 0  | 0  |            |     |     |
| 0             | 0  | 1  |            |     |     |
| 0             | 1  | 0  |            |     |     |
| 0             | 1  | 1  |            |     |     |
| 1             | 0  | 0  |            |     |     |
| 1             | 0  | 1  |            |     |     |
| 1             | 1  | 0  |            |     |     |
| 1             | 1  | 1  |            |     |     |

Figure 13.2 State Transition table

b) D flip-flop is chosen to implement the state machine shown in Figure 13.1. Derive the equations for D2, D1 and D0 from Table 13.1.





- c) From the equations derived in b), create the schematic for the state machine shown in Figure 13.1.
  - (i) Print the schematic.
  - (ii) Write your **Login Account** on the printout.
- d) Perform simulation on this circuit.
  - (i) Set up the necessary forces for **CLK**
  - (ii) Run the simulation and print the waveform.
  - (iii) Write your Login Account on the printout