Lab 12: Transient, AC and DC Sweep Analyses

Objective:

* Transient, AC and DC Sweep Analysis

Lab12a:

1. Perform Transient Analysis on the circuit shown in Figure 12.1. Set VIN to be SIN wave of frequency 10K and amplitude of 10V, use a stop time of 500us.

To set up the analysis:

- (a) Click Launch>ADE L
- (b) Click Analyses>Choose or Choose Analyses Icon
- (c) In the Analysis Section, select tran
- (d) Set the Stop Time to **500u**.
- (e) Click Enabled and OK.
- (f) Click **Create>Pin** or **Create Pin Icon** to add input pin **VIN** (set direction in the dialog to **input**). Note: when creating output pin, change the direction in the dialog to be **output**.

Figure 12.1 lab12a Circuit for Transient Analysis

- 2. To set up the forces for VIN:
 - (a) Click Setup > Stimuli Click Enabled Function: sin Amplitude: 10 Frequency: 10K

💙 Setup Analog Stimuli					- X
Stimulus Type 🛛 🖲	nputs 🤇	🕽 Global Sour	ces		<u>^</u>
-					-
OFF VIN (mod) Vo	ltage b	it			
	Lougo D	10			
1					
Enabled 🗹 🛛 Fu	unction	sin 🔽	Туре	Voltage	
DC voltage					
AC magnitude					
AC phase					
XF magnitude					
PAC magnitude					
PAC phase					
Delay time		-			
Offset voltage					
Amplitude		10			
Initial phase for Sinusc	bid				
Frequency		10K			
Amplitude 2					
Initial phase for Sinusc	oid 2				
Frequency 2					
FM modulation index		-			
FM modulation frequer	ncy				
AM modulation index	_				
	ОК	Cancel	Apply	Change H	Help

Figure 12.2 Setup Stimuli

- **3**. To trace the waveforms of VIN, node 1 and node 2 voltages.
 - (a) Click Outputs>To Be Plotted>Select On Schematic or Setup Outputs Icon
 - (b) Select **VIN**, 1 & 2 by clicking on the wire.
 - (c) Click Simulation>Netlist & Run or Netlist and Run Icon
 - (d) Click **OK**.
 - (e) To print waveform, click **File>Print**
- 4. From basic AC circuit theory, calculate the voltage at nodes 1 and 2. Compare the calculated values with the simulation results.

Lab12b:

1. Perform an AC analysis on the lab8b circuit shown in Figure 12.3. (Note: You may save a copy of lab8a as lab8b and alter the values of the components). Perform AC analysis on this circuit. Set frequency range from 10Hz to 100KHz with AC Magnitude of 10V.

\leq	12	÷	8	2	ŝ	100	12		*	•		1015			\hat{z}	22	100	1	8	•	×.	,
		·		•		N					•	•		101	•	•	\cdot			·		į
	12	2	. ,	VIN	RØ	Ľ		с,	2	1	2	10215	00	UII O	÷	1		ò	1	÷	2	ł
V	IN		\succ	ATLA	•	A.A	Ar	-		1	+	_	-	-16		-		2	1	y.	x:	2
				×	e.		• •			•	e.						•				×	,
~					0															i n		,
e.			÷		ŝ									2			÷		2	=2	5m	1.
22			÷	÷	i.					2	2			a.		22			3			
e.					÷:					•					×					×	×	
65	() •		×		0					*	:				×					×		,
1	1	÷			5		a.			•	•	100				5	0.51	e r				,
					ē												•	9	4			ł
12	<i>.</i> .				2		4			12					÷				9	nd	2	l
÷.,	26•			<i>x</i>	10	(*)							24	×		2		,	\checkmark			

Figure 12.3 lab12b Circuit

- 2. To set up AC Analysis :
 - (a) Click Launch>ADE L
 - (b) Click Analyses>Choose Analysis or Choose Analyses Icon
 - (d) In the Analysis Section, select **ac**
 - (e) Set the Sweep Variable to **Frequency**
 - (f) Set the Sweep Range to **Start-Stop** (Start:10, Stop:100K)
 - (g) Set the Sweep Type to Logarithmic, Points per decade: 1000
 - (h) Click **Enabled** and **OK**

3. To set up VIN: Click Setup>Stimuli Click Enabled. Select function as sin AC Magnitude: 10V AC Phase: 0

💙 Setup Analog Stimuli		. ×
Stimulus Type 🛛 💿 Inputs 🔾	Global Sources	4
		-
UFF VIN /gnd! Voltage bi	t	
l		
Enabled 🗹 Function	sin M Type Voltage	
DC voltage		
AC magnitude	10	0
AC phase	0	
XF magnitude		
PAC magnitude		
PAC phase		
Delay time		
Offset voltage		
Amplitude		
Initial phase for Sinusoid		
Frequency		
Amplitude 2		
Initial phase for Sinusoid 2		
Frequency 2		
FM modulation index		
FM modulation frequency		
AM modulation index		
ОК	Cancel Apply Change He	lp _

Fig 12.4 Setup Stimuli - VIN

4. Plot waveform of node 2 using Outputs>To Be Plotted>Select On Schematic or Setup Outputs Icon. From the waveform, deduce the resonant frequency and the peak inductor voltage.

Lab12c:

1. Perform an AC analysis on the circuit show in Figure 12.5 to study the effect of frequency from 10Hz to 100KHz.

Figure 12.5 lab12c Circuit

- 2. Set up VIN according to the following: Click Setup>Stimuli Click Enabled. Select function as sin AC Magnitude: 10V AC Phase: 0
- 3. Plot waveform of VOUT using Outputs>To Be Plotted>Select On Schematic or Setup Outputs Icon.
- 4. From the waveform, deduce the **resonant frequency** and peak voltage of **VOUT**.

Lab12d:

1. Perform a DC sweep analysis on the circuit shown in Figure 12.6.

Figure 12.6 lab12d Circuit

- 2. To setup a DC sweep Analysis:
 - (a) In the Analysis Section, select **dc**.
 - (b) Click Save DC Operating Point.
 - (c) Set the Sweep Variable to **Component Parameter**.
 - (d) Click on **Select Component**. This allows us to select instance on the schematic.
 - (e) Click on the **supply source vdc** from schematic window.
 - (f) A form appears which list all the instances parameters. Select **dc** and Click **OK**.
 - (g) In the Sweep Range section, select **Start-Stop** (Start: **0** Stop: **10**).
 - (h) Click **Enabled** and **OK**.
- 3. Run the simulation and trace of waveform of VIN, node 1 and 2.
 - (a) Click Outputs>To Be Plotted>Select On Schematic or Setup Outputs Icon
 - (b) Click on the wires to select **Vin**, **1** and **2**.
 - (c) Click Simulation>Netlist and Run or Netlist and Run Icon. Click OK.
 - (d) Deduce nodes 1 and 2 voltages when VIN is 5V.