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Chapter 2 Digital Design, Simulation and Implementation 
 
This chapter discusses Digital Circuit Design, Simulation and Implementation 
 
2.1 Digital Design Methodologies 
 
Logic circuits are classified into two types, "combinational" and "sequential." A 
combinational logic circuit is one whose outputs depend only on its current inputs. The 
output of a sequential logic circuit depends not only on the current inputs, but also on 
the past sequence of inputs, possibly arbitrarily far back in time. 
 
A combinational circuit may contain an arbitrary number of logic gates and inverters 
but no feedback loops. A feedback loop is a signal path of a circuit that allows the 
output of a gate to propagate back to the input of that same gate; such a loop generally 
creates sequential circuit behaviour. 
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In combinational circuit analysis, we start with a logic diagram, and proceed to a 
formal description of the function performed by that circuit, such as a truth table or a 
logic expression. In design/synthesis, we do the reverse, starting with a formal 
description and proceeding to a logic diagram. 
 
Definitions 
 
A literal is a variable or the complement of a variable. Examples: X, Y, X’, Y’. 
 
A product term is a single literal or a logical product of two or more literals. 
Examples: W’, X.Y.Z, X.Y’.Z, W'.Y’.Z’. 
 
A sum-of-products expression is a logical sum of product terms. Example: 
Z’+W.X.Y+X.Y’.Z+W’.Y’.Z. 
 
A product-of-sums expression is a logical product of sum terms. Example: 
Z'.(W+X+Y).(X+Y’+Z).(W'+Y’+Z). 
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The canonical sum of a logic function is a sum of the product terms corresponding to 
truth-table rows (input combinations) for which the function produces a 1 output. 
Function F of Table 2.1 can be described below: 
 

F = X,Y,Z (0,2,4,5,7) 
= X’.Y’.Z’ + X’.Y.Z’+ X.Y’.Z' + X.Y’.Z+X.Y.Z 
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X Y Z F 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 1 

 
Table 2.1 

 
Hence the notation X,Y,Z (0,2,4,5,7) is the sum of product terms corresponding  0, 2, 4, 
5, and 7 with variables X, Y, and Z. 
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The canonical product of a logic function is a product of the sum terms corresponding 
to input combinations for which the function produces a 0 output. Function F in Table 
2.1 can also be described using canonical product: 
 

F = X,Y,Z (1,3,6) 
= (X+Y+Z').(X+Y'+Z’).(X'+Y’+Z) 

 
Hence the notation X,Y,Z (1,2,6,7) is a the product of sum terms corresponding to 1, 2, 
6 and 7 with variables X, Y, and Z. 
 
In Summary, there are five possible representations for a combinational logic function: 

- A truth table. 
- Sum of Product 
- Product of Sum 
-  Canonical Sum 
-  Canonical Product 

 
  



Electronic Circuit Simulation Page 6 of 86 Effective Date: 10 Apr 2017 

Switching-Algebra  
 
The following three laws are the same for Boolean algebra as they are for ordinary 
algebra: 
  
1. Commutative law of addition and multiplication: 
 eg. A + B = B + A 
  AB = BA 
2. Associative law of addition and multiplication: 
 eg. A + (B + C) = (A + B) + C 
  A(BC) = (AB)C 
3. Distributive law: 
 eg.  A(B+C) = AB + AC  
  (A+B)(C+D) = AC + AD + BC + BD 
 
These three laws hold true for any number of variables. 
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In addition to the basic Commutative, Associative, and Distributive laws, several 
Boolean identities and theorems are very useful in simplifying Boolean logic equations 
and logic circuits. They are listed below: 

 

B
BAB

C













A' = AB A'+                  
 = A' +A      10 Rule 

A =   )'A' (    9 Rule 
1 =  A' +A      8 Rule 

0 =A'A      7 Rule 
A =A A  +A      6 Rule 

A =A A A      5 Rule 
1 = 1 C  B +A      4 Rule 

A = 0 +A      3 Rule 
A = 1 A      2 Rule 

0 = 0B A      1 Rule 

 

 
DeMorgan's Theorem is another useful theorem:  
 

(X1 + X2 + X3+…….+ Xn)’= X1’. X2’ . X3’ ………. Xn’ 
 

(X 1 . X2 . X3……..Xn)’= X1’ + X2’ + X3’ + …… + Xn’ 
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Example: 
 
Use DeMorgan’s theorem to convert the following SOP expression to POS. (Solution 
will be given during lecture.) 
 
 (A’.B.C + A.B’.C + A.B.C’)’ 
 
Combinational logic circuit design usually starts with a description of the problem.  
We call this circuit description. For example, we may be asked to design a three bits 
even number detector. A logic function described in this way can be designed directly 
from the canonical sum or product expression. 
 
 F = N2,N1,N0 (2,4,6) 
 
This circuit can be synthesise directly using AND, NOT and OR gate. This is shown in 
Figure 2.1. 
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Figure 2.1 Even number detector using mixture of gates 
 
However, for most technology, NAND and NOR gates are faster. Therefore, we may 
want to manipulate the equations so that the circuit consists of NAND or NOR gate 
only. This process is call circuit manipulations. 
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Figure 2.2 Even number detector using NAND gates only 
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Finally, in order to use minimal number of gates, we can perform a combinational 
circuit minimisation using K-map. 

 
 

 
Figure 2.3 K-map and simplified circuit 
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Karnaugh Maps 
 
The Karnaugh map (K-map) is a graphical device used to simplify a logic equation or 
to convert truth table to its corresponding logic circuit in a simple, orderly process. K-
map's practical usefulness is limited to six variables. This topic will be limited to 
problems with up to four inputs, since five- and six-input problems are too involved 
and are best done by a computer program. 
 
The labelling of input values on the K-map is done to assure that there is only one 
input variable that changes between adjacent cells. Two, three, four-variables K-maps 
are shown in Figure 2.4.   
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Figure 2.4 Two-variable, three-variable, and four-variable Karnaugh maps 
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Rules for Grouping Cells for Simplification: 
 
You can choose to group the 1s or the 0s that are in adjacent cells according to the 
following rules, by drawing a loop around those cells: 
 
1. Adjacent cells are cells that differ by only a single variable. 
2. The 1s or 0s in adjacent cells must be combined in groups of 1,2,4,8,16, and so on. 
3. Each group of 1s or 0s should be maximised to include the largest number of 

adjacent cells as possible in accordance with rule 2. 
4. Every 1s or 0s on the map must be included in at least one group.  There can be 

overlapping groups if they include noncommon 1s or 0s. 
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Example: 
Simplified the equation X=ABC(3,4,5,6,7) by circling the 0s. 

A           B          C          X

0            0           0           1
0            0           1           1
0            1           0           1
0            1           1           0
1            0           0           0
1            0           1           0
1            1           0           0
1            1           1           0

00

01

AB

10

C

1          1

1          0

0          0

0          0

11

10

 

  
Figure 2.5 K-map with three input variable 
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Example: 
 
Simplified the term from the K-map shown in Figure 2.6 by using the rules of  
grouping 0s cell for simplification and simplifying expression rules. 
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Figure 2.6 Four inputs K-map 
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"Don't Care" Conditions 
 
"Don't Care" condition is defined as input conditions for which there are no specified 
output level.  It is usually because these input condition will never occur.   
 
When the input combinations will not occur, the output states are filled in on the truth 
table and in the K-map as a X, and are referred to as don't care states.  The "don't care" 
conditions should be considered as a 0 or 1 to produce K-map that yields the simplest 
expression. 
 



Electronic Circuit Simulation Page 19 of 86 Effective Date: 10 Apr 2017 

Example: 

00

01

11

10

00          01         11        10

0           0        x          0

1         1          x          x

1          1          x          0

1           0          x          x

BA
DC
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Figure 2.7 Using of don’t care state 



Electronic Circuit Simulation Page 21 of 86 Effective Date: 10 Apr 2017 

2.2 Case Study on Combinational Circuit Design 
 
0to9decoder Design (See Lab 4) 
 

 
 

Figure 2.8 Sample decoder (0to9decoder) circuit 
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Finite State Machine Design 
 
Latches and Flip-Flops 
The most commonly used latches and flip-flops are:  
 
S-R latch 

R

S

Q

/Q

Logic symbol

S

R

Q

/Q

S

R

Logic circuit  
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Figure 2.9 Logic symbol, logic circuit, function table and waveform for S-R latch 
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S-R latch with enable pin 
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     Logic Symbol  Logic Circuit 
  



Electronic Circuit Simulation Page 25 of 86 Effective Date: 10 Apr 2017 
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Function Table 
 

Figure 2.10 Logic symbol, circuit and function table for S-R latch with enable pin 
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D latch 
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"X" indicates "don't care" 

Function Table 
 

Figure 2.11 Logic symbol, logic circuit and function table for S-R latch 
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Edge-triggered D flip-flop 
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D Q
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     Logic Symbol  Logic Circuit  
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Figure 2.12 Logic symbol, logic circuit and function table for D flip-flop 

 
  



Electronic Circuit Simulation Page 29 of 86 Effective Date: 10 Apr 2017 

Edge-triggered J-K flip-flop 
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J K CLK Q (output) 
0 
0 
1 
1 

0 
1 
0 
1 

 Q0 (no change) 
0  (reset) 
1   (set) 
Q0(toggle) 

 
Function Table 

 
Figure 2.13 Logic symbol, logic circuit and function table for JK flip-flop 
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T flip-flop 
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Two possible logic circuit for T flip-flop 
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Function Table 
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Waveform for T flip-flop 

 
Figure 2.14 Logic symbol, circuit and function table and waveform for T flip-flop 
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Presetting and Clearing of flip-flops and latches 
 
Most flop-flops and latches come with a Clear and Preset pins for the user to do 
asynchronous set or reset. The Clear and Preset pins can be active HIGH or active 
LOW. 
 
Clocked synchronous State Machines 
"State machines" is a generic name given to a sequential circuit; "clocked" refers to the 
fact that their storage elements (flip-flops) employ a clocked input; and “synchronous" 
means that all of the flip flops use the same clock signal. 
 
In state machines circuits, all changes at the output will take place under the control of 
a periodic sequence of pulses called a clock. Each clock pulse will permit the circuit to 
either remain in the present state (present set of flip-flop values) or move to another 
state (a new set of flip-flop values). The advantage of clocked sequential circuits is 
that glitches that occur due to the imperfect nature of the logic devices will have no 
effect. However, to have this advantage, we must choose the clock period such that it 
is longer than the worst multiple delay paths. 
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There are two main types of State machine, Mealy machine and Moore machine. For a 
Mealy machine, the outputs are function of both the inputs and the current states. For 
Moore machine, outputs are function of only the current states. Figure 3.17 show the 
structures of Mealy and Moore machines. 
 

excitation
Next
State
Logic
  F

State
Memory

Output
Logic
   G

Inputs

Clock

Outputs

 
Mealy Machine 

 
Next state and output logic blocks are combinational logic blocks. State memory is a 
sequential logic block. 
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Figure 2.15 Structures of Mealy and Moore Machines 
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Clocked Synchronous State-Machine Design 
The characteristic equations for various devices are listed below. These equations are 
needed when we analyse the state machine. Q* denotes the next state. 
 
S-R latch/flip flop : Q* = S+R’.Q 
D latch/flip flop  : Q* = D 
J-K flip flop   : Q* = J.Q’ + K’.Q 
T flip flop   : Q* = Q’ 
T flip flop with enable: Q* = EN.Q’ + EN’.Q 
 
The synthesis (design) of the sequential circuits consists of obtaining a table of 
diagram for the time sequence of inputs, outputs and internal states.  Detail steps are as 
follows: 
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(1) Construct a state/output table corresponding to the word description or 
specification, using generic names for the states. 

(2) (Optional) Minimise the number of states in the state/output table. 
(3) Choose a set of state variables and assign state-variable combinations to the name 

states. 
(4) Substitute the state-variable combinations into the state/output table that shows 

the desired next state-variable combination and output for each state/input 
combination. 

(5) Choose a flip-flop type (e.g., D or J-K) for the state memory. In most cases, you’ll 
already have choice in mind at the outset of the design, but this step is your last 
chance to change your mind. 

(6) Construct an excitation table that shows the excitation values, required to obtain 
the desired next state for each state/input combination. 

(7) Derive excitation equations from the excitation table. 
(8) Derive output equations from the state/output table. 
(9) Draw a logic diagram that shows the state-variable storage elements and realises 

the required excitation and output equations. 
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Design of a Moore machine, two-bit up/down counter which output, Z= ‘1’ when 
count = ‘11’ 
The outputs for the Moore-type circuits are independent of the inputs, i.e. the outputs 
are functions of the present state only. The Moore outputs change their values only 
when the state changes because of a change of the inputs. The figure below shows an 
example of a moore state diagram and state table. (Note synchronous counter is a 
special type of synchronous machine, the state variables themselves are the outputs of 
the state machines.) 
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A/00
Z=0

C/10
Z=0

D/11
Z=1

B/01
Z=0

UP

UP’

UP

UP

UP’UP UP’

UP’

 
 

Figure 2.16 Two-bit up/down counter, Moore Machine 
 
The state diagram above represents a synchronous circuit with four states, A, B, C and 
D, and an input variable, UP. In each state it is necessary for the circuit to be able to 
determine which state it is in and what the current value of UP is, and then to set up the 
FF inputs such that the correct state is entered when the clock input occurs. The arrows 
connecting the states represent the occurrence of a clock input and the variables 
alongside the arrows show the input condition that causes that path to be followed. 
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Present 
State 
Q1Q0 

Next State 
Q1*Q0* 

Output 
Z 

UP=0 UP=1 
A,00 D,11 B,01 0 
B,01 A,00 C,10 0 
C,10 B,01 D,11 0 
D,11 C,10 A,00 1 

Table 2.2 State/Transition/Output table 
 

The implementation of a sequential circuit with n states will require m FFs where 
2m=n.  The outputs of these FFs are called the state variables and are used to identify 
which state the circuit is in.  
 
The next step is to decide what FF to use. For this example, both approaches are used. 
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Using D FF 
 
We can determine the next-state equations for each of the two state bits. Q1* and Q0* 
represent the values of the next state function. The present state values are represented 
by Q1 and Q0. The karnaugh maps can be generated easily from the state transition 
table. Each row corresponds to a state and each column corresponds to a combination 
of the inputs; the entries in the karnaugh maps correspond to the values of Q1* and 
Q0* in the transition table.   
 
The characteristic equation for D flip-flop is Q* = D. Therefore the karnaugh map can 
be used to find the minimal equations at the input of D flip-flops. The output equation 
can also be obtained from the state/transition/output table. In this case, there is no need 
to draw a karnaugh map for the output equation because only two variables are 
involved. 
Output equation: Z=Q1.Q0 

 



Electronic Circuit Simulation Page 42 of 86 Effective Date: 10 Apr 2017 

0 1 

00 

01 

11 

10 

Q1Q0 

UP 

1 1 

0 

1 

0 0 

0 

1 

D1 = Q1’.Q0’.UP’ + 
         Q1’.Q0.UP + 
         Q1.Q0’.UP + 
         Q1.Q0.UP’ 

D0 = Q0’ 

0 1 

00 

01 

11 

10 

Q1Q0 

UP 

0 1 

0 

1 

0 1 

1 

0 

 
 

Figure 2.17 Next state and output equations for the counter 
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Figure 2.18 Circuit diagram using D FF 
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Design of a Mealy machine, two-bit up/down counter with UP pin and output, Z = 1 
when count ‘11’ and UP =‘1’  
We begin the design process by constructing a state diagram to meet these requirements.  
By assigning state A to ‘00’, B to ‘01’, C to ‘10’ and D to ‘11’, we arrive at the state 
diagram below: 

 

A/00 

C/10 D/11 

B/01 

UP/Z=0 

UP’/Z=0 

UP/Z=0 

UP/Z=0 

UP’/Z=0 
UP/Z=1 UP’/Z=0 

UP’/Z=0 

 
 

Figure 2.19 Two-bit up/down counter (Mealy Machine) 
 
The state table for this sequence detector can easily be constructed from the state 
diagram. 
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Present 
State 
Q1Q0 

Next State 
Q1*Q0*,Output 

Z 
UP=0 UP=1 

A,00 D,11,0 B,01,0 
B,01 A,00,0 C,10,0 
C,10 B,01,0 D,11,0 
D,11 C,10,0 A,00,1 

Table 2.3 State/Transition/Output table for two-bit up/down counter (Mealy Machine) 
 

Before we can derive the flip-flop input equations, we must specify the type of flip flop 
to be used in the design.  For this example, let us use D flip-flops. (Note: the K map is 
exactly the same shown in Figure 2.17. The only difference is the output equation which 
is now a function of both input and the states.) 
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Z = Q1.Q0.UP 
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Figure 2.20 Kmap for output equation 
 
From equations derived from Figure 2.17 and Figure 2.20, we can draw the circuit for 
the state machine. 
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Figure 2.21 Circuit for the Mealy Machine 
 
  



Electronic Circuit Simulation Page 48 of 86 Effective Date: 10 Apr 2017 

2.3 Case Study on Finite State Machine Design 
 
0to9counter Design (See Lab 3) 
 

 
 

Figure 2.22 Sample counter (0to9counter) circuit 
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2.4 Digital Library Modeling and Development 
 
Library Modeling 
 
Level of Abstractions 
In general, four different types of objects can be identified in the design process of 
electronics system: transistors, gates, registers and processor components. These 
abstractions are summarised in Table 2.4.      
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Level Behavioural 
Forms 

Library Physical 
Objects 

Transistor Differential 
equations, 
Current-voltage 
diagrams 

Transistors, 
resistors, 
capacitors 

Analogue and 
digital Cells 

Gate Boolean 
equation, Finite-
state machines 
(FSM) 

Gates, Flip-flops Modules, 
Units 

Register Algorithms, 
flowcharts, 
instruction sets, 
generalised FSM 

Adders, 
comparators, 
registers, counters 

Microchips 

Processor  Executable 
specification, 
programs 

Processors, 
controllers, 
memories, ASICs 

Printed-circuit 
boards, multi-
chips modules 

 
Table 2.4 Level of Abstraction 
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Transistor Level - The main components in the Library for the transistor level are 
transistors, resistors and capacitors, which are combined to form analog and digital 
circuit that can satisfy a given functionality. This functionality is usually described by 
a set of differential equations or by some type of current-voltage relationships. The 
physical representation of these analogue and digital circuits, called cells, would 
consist of transistor-level components and the wires that connect them. 
 
Gate Level - The main components on the gate level of abstraction are logic gates and 
flip-flops. Logic gates are special circuits that perform Boolean operations which are 
similar to conjunctions in the English language such as or and and. These cells can be 
grouped and placed on the silicon surface to form arithmetic and storage modules or 
units that are used as the basic components in the register level. These units are 
described behaviourally by means of Boolean equations and finite-state-machine 
(FSM) diagrams. 
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Register Level - The main components on the register level of abstraction are 
arithmetic and storage units, such as adders, comparators, multipliers, counters, 
registers, register files, queues and data paths. Each of these register components is a 
module or unit which has fixed dimensions, a fixed propagation time and a fixed 
position for the inputs and outputs located on its boundary. 
 
These register components can be assembled and interconnected into microchips, 
which are used as the basic components on the next-higher level of abstraction. In 
general, these microchips are described by flowcharts, instruction sets, generalised 
FSM diagrams or state tables. 
Processor Level - The highest level of abstraction presented in Table 2.4 is called the 
processor level, since the basic components on this level are processors, memories, 
controllers, and interfaces, in addition to the custom microchips called application-
specific integrated circuits (ASIC). Generally, one or more of these components are 
placed on a printed-circuit board and connected with wires that are printed on the 
board.   
 



Electronic Circuit Simulation Page 53 of 86 Effective Date: 10 Apr 2017 

In some cases we can reduce the dimensions of the board by using a silicon substrate 
instead of a printed-circuit board to connect the microchips, in which case the package 
is called a multi-chip module. The systems that are composed from these processor-
level components are usually described behaviourally by either a natural language, e.g. 
a hardware description language, or an algorithm written in a programming language. 
 
Design Process 
During the design process of an electronic digital system, any one of these levels of 
abstraction may be used one or more times, depending on how many different goals, 
technologies, components, libraries and design alternatives we want to explore.  
 
We must choose carefully an efficient design methodology that determines the proper 
subset of abstraction levels, synthesis tasks at the order in which they are executed, 
and the type of CAD tools available during the execution of each task in the design 
process. 
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The most popular methodology consists of building a library for a certain abstraction 
level, then using synthesis to convert a behavioural description into a structure that can 
be implemented with the components from this library. 
 
In real practice, the design process is always heavily influenced by the following 
factors: 
- the nature of the product being designed 
- how soon the product must be brought to market 
- the particular technology used for its manufacture 
- the company’s organisational structure 
- the design team’s experience 
- the availability of CAD tools  
- the amount of budget allocated.  
 
In general, the design process can be divided into the following steps: Design 
Specification, Library Development and Design Synthesis, Design Analysis, 
Documentation and Manufacturing. 
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Library Development 
 
Library development is one the most important step in any design process.  It has great 
impact on the final design. 
 
Once the high-level block diagram has been developed in the specification phase, it 
must be iteratively refined or decomposed into smaller components. The goal of this 
process is to ensure that the product contains nothing but the predefined components 
from a library of components that has been characterised for a particular 
manufacturing technology. 
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Different EDA tools require different information for the database it is working on. 
These information are usually represented in the form of library/model/ rules. Some of 
these library/model/rules are generic in nature (e.g. the behaviour of an NAND 
function, or a pentium), but many of them are specific to a particular foundry. (e.g. the 
propagation delay of a NAND gate from CSM most likely will be different from a 
NAND gate from TSMC). 
 
The component in the library must be designed, tested, and fully documented so that 
designer can use them without having to analyse their structure. The content of EDA 
library typically include the followings: 
- The component’s functionality, the names of inputs and outputs and the typical 

application i.e. relation between the outputs and inputs. 
- The component’s physical dimensions, the position of inputs and outputs and the 

packaging information i.e. Physical device parameters: e.g. parameter of a 
transistor, resistor, area etc 

- The electrical constraints, the power supply requirements, the current and voltage 
ranges that are allowed at the inputs and outputs and the heat dissipation. 
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- The voltage waveforms for inputs and outputs, the timing relationships between 
them, and the critical delays from inputs to outputs eg propagation delay, set-
up/hold timing requirement etc. 

- The components models to be used by CAD tools for simulation, synthesis, 
physical design and testing. 

- The symbol and abstract of the components ie graphical representation of the 
model and the layout of the model. 

- Wire load Model 
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Digital Library Modelling 
 
Definition of timing parameters: 
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Figure 2.23 Flip-Flop timing parameters 
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Propagation Delay ( tPHL and tPLH) 
The amount of time it takes for the output of the flip-flop to change its state from a clock 
trigger or asynchronous set or reset. It is defined from the 50% point of the input pulse 
to the 50% point of the output pulse. 
tPHL :   The propagation time from HIGH to a LOW. 
tPLH :   The propagation time from LOW to HIGH. 
 
Output Transition Time 
The output transition time is defined as the rise time  or fall time of  the output. 
Rise Time ( tTLH ) :   is the 10% to 90% time, or LOW to HIGH transition time. 
Fall Time ( tTHL ) :   is the 90% to 10% time, or HIGH to LOW transition time. 
 
Setup Time ( tSU ) 
The time interval immediately preceding the active transition of the clock pulse during 
which the control or data inputs must be stable ( at a valid logic level). 
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Hold Time ( tH ) 
The amount of time that the control or data inputs must be stable after the clock trigger 
occurs.  
 
Removal Time ( trem) 
The time between the end of an overriding asynchronous input, such as clear or reset 
and the earliest allowable beginning of a synchronous clock input. 
 
Operating Frequency ( fmax) 
The maximum input clock frequency of the clock input to the flip-flop.  If fmax is not 
listed, an approximate maximum frequency of operation can be found by taking the 
reciprocal of the worst case average propagation delay time (tPHL + tPLH) /2.  If the 
calculated fmax is larger than the listed fmax, always used the lower value for fmax. 
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Content of Digital Library 
The content of digital library is as follows: 
 
- Function :    Boolean equation (e.g. !((A B)+C) ) 
              State table (e.g. state table for Flip-Flop) 
- Signal Flow Direction :  Input, output or bi-directional 
- Loading :     Capacitive Load at input and output 
- Unateness :    Positive, negative or unknown 
- Timing Arc :    Logic 0 to logic 1 propagation delay 
                       Logic 1 to logic 0 propagation delay 
                        Logic 0 to hi-Z    propagation delay 
                        hi-Z    to logic 1 propagation delay 
                        Logic 1 to hi-Z    propagation delay 
                        hi-Z    to hi-Z    propagation delay 
                        Logic 0 to Logic 1 transition time 
                        Logic 1 to Logic 0 transition time 
- Timing Requirement :  Setup time,  Hold time 
                              Minimum pulse width 
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- Operating Condition :  Derating in performance for Voltage variation; 
                    Derating in performance for Temperature variation; 
       Derating in performance for foundry process variation 
- Wire load :     Wire length estimation 
 
Digital Library development/Characterisation of timing model 
Process of a library development for a timing model is as follow: 
 
-  Perform spice simulations using spice model from the foundry. 
-  Measure the performance from the simulation result. 
-  Design test structure for fabrication. 
-  Co-relate silicon performance with spice simulation. 
 
Timing Library development 
A more complete library must be characterised at different operating condition and 
different input condition. Most EDA tools adopted a table look-up approach for 
estimating delay. A 2-D table model is most commonly used for deep-sub micron 
technology. The delay is a function of input skew and the total load at output. 
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Example of a 2-input NAND Gate: 
1.  Measure delay and output transition from input pin A  to output pin Y for different 

output load  and input transition. 
2.  Repeat (1) for input pin B. 
3.  Repeat (1) and (2) for different operating condition. 
 
Sample Results for a inverter output Pin Y w.r.t Pin A at typical corner (operation 
conditions): 
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Propagation delay for 0 to 1 transition 
  

            Output 
                     
Load (pf) 

     

Input fall 
time (ns) 

0.01 0.04 0.14 0.54 

0.08 0.097 0.174 0.525 1.607 
0.60 0.160 0.257 0.611 1.686 
1.20 0.199 0.317 0.721 1.785 
3.00 0.258 0.425 0.954 2.113 



Electronic Circuit Simulation Page 65 of 86 Effective Date: 10 Apr 2017 

 
Propagation delay for 1 to 0 transition 
 
 
 

             
Output 
                   
Load (pf) 

     

Input rise 
time (ns) 

0.01 0.04 0.14 0.54 

0.08 0.081 0.136 0.391 1.178 
0.60 0.162 0.242 0.510 1.293 
1.20 0.216 0.322 0.650 1.430 
3.00 0.321 0.476 0.942 1.860 
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Despite taken into consideration of many important factors in library characterisation, 
sometime we still are unable to get very good delay estimation in the EDA tool. 
 
Possible causes: 
1.  For deep sub-micron technology, the delay due to wire load is significant (for 

0.35um, 40% is not uncommon). Tools like logic synthesis, pre-layout simulator 
can only use estimated wire load. 

2.  Timing is characterised only at a few input conditions/operating conditions. Need 
to be interpolated or extrapolated. 
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2.5 Digital Simulation 
 
Digital simulation allows you to model the behaviour of a circuit in terms of logical 
values of signals and the timing of events, before actually building. Digital Simulators 
are mainly events driven simulators, they calculate and store changes on signals (or 
nodes) in a circuit’s network. 
 
Digital simulators do not calculate the precise voltage or current values for nodes in a 
circuit, they only have to track the changes to the state of each node in the system. 
These states are typically a combination of logic levels (e.g. 0, 1 or unknown) and 
signal strength (strong, resistive, high impedance or indeterminate). 
There are many factors that influence the accuracy of the digital simulators including: 
- The number of logic states defined by the simulators 
- The method used to model delays 
- The method used (if any) to model the effect of fan in, fan out, loading, 

temperature and power 
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When using a digital simulator, you apply stimulus to a software model of a circuit and 
view the resulting circuit outputs. Stimulus can be provided to the simulator in many 
forms including waveforms, simulator commands, test vector etc. Similarly the output 
can be in many forms including text window, waveform etc. Simulating a digital 
circuit requires the stimulus and the circuit software model. To understand simulation, 
it is useful to think analogies to actual hardware, you need the circuit on the 
breadboard and the necessary inputs to test the circuit. Figure 2.24 shows how a 
conceptual design, consisting of a collection of component devices, is processed 
during simulation. 
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The simulator accepts test stimulus and applies this stimulus to the circuit. The 
simulator then model your design using the models or components that you have used 
in this circuit and reports how the circuit reacts to the stimulus over time. The users 
can choose either to look at the response at the final outputs or/and the response at the 
intermediate nodes within the circuit. 
 
Advantages of doing a digital simulation 
The reasons for doing digital simulation are as follows: 
- Simulation allows you to experiment with components that you don’t actually 

have available. 
- Simulation saves time. Once you have become familiar with the simulation 

methods, you will find that setting up and running a simulation takes far less time 
than a hardware prototype. 

- Simulation gives you greater control and you can observe the inputs and outputs 
of each component in the circuit. 

- Simulation allows you to modify the design easily. 
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Figure 2.24 Basic flow during simulation 
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Timing Modes 
Each mode consists of settings that make simulation speed and accuracy tradeoffs.  
You can set the mode for the design when you invoke, or you can use individual 
commands on individual instances. The timing modes are as follows: 
 
Functional Simulation – Zero delay 
In Functional simulation the simulator helps you to determine if the basic operation of 
the circuit is correct, without regard to the actual operating speeds and internal delays. 
Zero delays between events are assumed. 
 
Functional Simulation - Unit delay 
This mode provides high performance at the expense of accuracy. You can use this 
mode when debugging design functionality, find out the race condition and glitches 
and other circuit errors that results from such condition. With unit delay, a single delay 
time is assigned to every gate in the design i.e. all output and I/O pins have a rise and 
fall delay of one time step and all input pins have a rise and fall delay of zero time 
step. The simulator ignores all technology files. 
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Timing Simulation 
In Timing simulation, the simulator actually calculates and models the delays between 
events, based on the knowledge that it has about the propagation delays on signals, 
gate switching delays, rise and fall times and other factors. It determines how your 
design will behave when it is operated at speed in the final implementation. 
 
Timing Simulation - Linear timing 
This mode provides straight-line approximations of the timing that is defined by the 
associated technology files. In this mode, you can debug the effects of timing on your 
design's functionality, but only if the components include linear technology files. In 
this mode, timing is computed significantly faster than when you use full technology 
files. 
 
Timing Simulation - Linear timing with constraint checking 
This mode provides straight-line timing approximations with full constraint checking.  
You can use this mode to produce timing violation messages. As with the linear timing 
mode, your components must provide linear technology files. The next step is to use 
full timing with constraint checking. 
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Timing Simulation - Full timing 
This mode provides timing accuracy without timing constraint checking. This mode 
simulates the effects of timing on the design logic. Full timing consists of the min, 
typical, or max values from all technology file-specified delay equations, rise and fall 
pin delays, and BLM and VHDL delay instructions. Simulating a design with complete 
timing will result in a more accurate reflection of the actual design’s performance. A 
simulator that models actual gates and signal delays has a lot more to keep track of. 
Full timing simulation is used only when you have decided on the final 
implementation technology. 
 
Timing Simulation - Full timing with constraint checking 
This mode provides complete timing accuracy with full constraint checking. You can 
use this timing mode to produce timing violation messages during full-circuit 
debugging operations. This mode uses the min, typical, or max values from all 
technology file-specified delay equations, rise and fall pin delays, and BLM and 
VHDL delay instructions; it also checks for constraints and spike, contention, and 
hazard violations. 
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Logic Values and Drive Strengths 
There are several signal states. Each signal state is a combination of a logic value and 
a drive strength. Logic value and drive strength are defined as follows: 
 
Logic value is a Boolean value that indicates the level of a signal. The logic values are: 

‘0’ A low signal level 
‘1’ A high signal level 
‘X’ An unknown signal level 

 
Drive strength is a value that allows the simulator to resolve signal contention and to 
simulate effects of different technologies. The drive strengths are: 

S A strong signal strength 
R A resistive signal strength 
Z A high impedance signal strength 
I An indeterminate signal strength 
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2.6 Hierarchical Design and System Partitioning 
 
Hierarchy 
 
The use of hierarchy or “divide and conquer”, involves dividing a system/module into 
sub-modules and then repeating this operation on the sub-modules until the complexity 
of the sub-modules is at an appropriately comprehensible level of detail. This approach 
is sometimes referred to as design partition and sub-partition of the modules. Partition 
of the design in general is based on functionality. Example of design partition may be 
based on digital and analog blocks or digital blocks with distinct functions.  
 
Partitioning 
 
Partitioning can also be done based on combinational logic and sequential logic 
blocks. Within the main blocks, sub-partition is done on the block and this approach is 
to descend into the hierarchy until the level where modules are defined in terms of 
standard functions like adder, multiplexer, comparators, registers etc. 
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Regularity 
 
Hierarchy involves dividing a system into a set of sub-modules/sub-blocks. However, 
hierarchy alone does not necessarily solve the complexity problem. For instance, the 
repeatedly division of the hierarchy of a design into different sub-modules but will still 
end up with a large number of different sub-modules/sub-blocks. 
 
With regularity as a guide, the designer attempts to divide hierarchy into a set of 
similar building blocks. The use of iteration to form arrays of identical cells/sub-
blocks is an illustration of use of regularity in a system/IC design. This allows the 
reuse of sub-blocks. Regularity can exist at all levels of the design hierarchy. 
Regularity allows an improvement in productivity by reusing specific blocks/designs 
in a number of places, thus reducing the number of different designs that need to be 
completed. 
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Modularity 
 
The tenet of modularity adds to hierarchy and regularity the condition that sub-
modules have well defined functions and interfaces (interconnections with other 
modules). The interconnections, along with functionality must also be defined in an 
unambiguous manner.  
 
Modularity helps the designer to clarify and document an approach to a problem and 
also allows a design system to more easily check the attributes of a module as it is 
constructed. The ability to divide a task into a set of well-defined modules also helps 
in a huge design where different modules are design by different engineers.  
 
The correct decision regarding modularity allows one to break up a system into blocks 
with confidence that when the blocks are re-combined, the system will function as 
specified. 
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Locality 
 
Locality usually refers to “time locality”; that is to mean to pay attention to clock 
generation distribution network of the system. The approach is to ensure that timing 
critical sub-blocks (share the same clock for synchronisation) must be kept as close as 
possible. 
 
If a system have several analogue and digital blocks, it would be necessary to 
physically group the analogue and digital blocks separately and thus ensuring system 
having better noise immunity as high speed digital circuit generate noise in the power 
lines. 
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2.7 Digital Design Implementation 
 
Overview 
 
Once a design has been created, simulated, and synthesized, the next step is 
implementation of the design into the particular complex electronic device. Figure 
2.25 shows a sample implementation process for complex electronic device. Usually 
the implementation process uses the tools supplied by the device (e.g., FPGA) vendor. 
The functions that were defined in the design have to be matched to the available 
blocks, gates, and other logic elements on the chip. Some basic steps in implementing 
a design are: 

 Floorplan  
 Translate  
 Map  
 Place and Route 
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Figure 2.25 Implementation Process for Complex Electronics Device 
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Floorplanning is the process of identifying structures that should be placed close 
together, and allocating space for them. In designing complex electronics, there are 
multiple goals that must be met, and the goals often conflict. Finding the best balance 
between the various goals and requirements is something of an art. Some goals are:  

 Minimize space on the chip (allows choice of less costly chips)  
 Meet or exceed required performance  
 Place everything close to everything else to minimize transmission time in the 

signal paths 

Translation involves converting the results of the synthesis process to the format 
supported internally by the vendor's place-and-route tools. The incoming netlist is 
checked for adherence to design rules and is then optimized for the chip.  

Translation may also be referred to as compilation or compiling. This process is 
automatic, but it takes some wading through the reports produced by the tool to verify 
that the translation/compile was correct. An intelligent post-processor, rather than the 
designer (or worse, the quality assurance engineer), should be used to find syntax and 
binding errors - otherwise you will have to do this for each design modification!  
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Mapping takes the logic blocks and determines what logic gates and interconnections 
on the device should be used to implement those blocks. During the mapping step, the 
functions within the device (such as counters, registers, or adders) are aligned with the 
logic resources of the chip. The exact process is device dependent. For example, 
FPGAs have look-up tables that perform logic operations. The mapping tool (part of 
the vendor's tool suite) collects the gates defined by the netlist into groups that will fit 
within the look-up tables. 

Place and Route is the process of placing the logic blocks in the best spots on the chip 
to achieve efficient routing. Items that the place and route tool will look at include 
routing length (how far does a signal have to travel), track congestion (how many 
signals are coming into or out of an area), and path delays. While the process is usually 
performed automatically by the vendor-supplied tools, the designer can specify some 
parameters and constraints that the final layout has to meet, including:  

 the initial placement of the cells  
 a position for each physical connector  
 a form factor 
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Programming the device  

Once the design is successfully verified and found to meet timing and performance 
requirements, the final step is to actually program the device. At the completion of 
placement and routing, a binary programming file is created. It's used to configure the 
device. The process of programming is usually dependent on the type of memory used 
to store the device configuration and on the device type (e.g., FPGA or ASIC). ASICs 
are manufactured, rather than programmed by the end-user, and verification of the 
design is critically important. Re-generating an ASIC is costly, both in dollars and in 
schedule time. FPGAs and other programmable devices are programmed by the end-
user, either in-circuit or in a special programming device. Usually, a software tool 
running on a PC will interface with the programmable device and download the 
program using the appropriate format. 
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Entrance Criteria 

The following criteria should be met prior to beginning the implementation process.  

 The design is reviewed and approved.  
 Design synthesis was successful.  
 Design verification and simulation was successfully performed.  

Exit Criteria 

At the end of the implementation phase, the following criteria should be met:  

The device is programmed with the design. 
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2.8 Case Study on Digital System Design Hierarchy, Partitioning and 
Implementation 
 
Stop Watch Design (See Chapter 3) 
 

 
 

 Figure 2.26 System Partitioning and Hierarchy Design of Stop Watch 
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Implementation of Stop Watch Design (See Lab 7) 
 

 
 

Figure 2.27 Altera’s FPGA Programmer Tools 


