
Electronic Circuit Simulation Page 1 of 86 Effective Date: 10 Apr 2017

Chapter 2 Digital Design, Simulation and Implementation

This chapter discusses Digital Circuit Design, Simulation and Implementation

2.1 Digital Design Methodologies

Logic circuits are classified into two types, "combinational" and "sequential." A
combinational logic circuit is one whose outputs depend only on its current inputs. The
output of a sequential logic circuit depends not only on the current inputs, but also on
the past sequence of inputs, possibly arbitrarily far back in time.

A combinational circuit may contain an arbitrary number of logic gates and inverters
but no feedback loops. A feedback loop is a signal path of a circuit that allows the
output of a gate to propagate back to the input of that same gate; such a loop generally
creates sequential circuit behaviour.

Electronic Circuit Simulation Page 2 of 86 Effective Date: 10 Apr 2017

In combinational circuit analysis, we start with a logic diagram, and proceed to a
formal description of the function performed by that circuit, such as a truth table or a
logic expression. In design/synthesis, we do the reverse, starting with a formal
description and proceeding to a logic diagram.

Definitions

A literal is a variable or the complement of a variable. Examples: X, Y, X’, Y’.

A product term is a single literal or a logical product of two or more literals.
Examples: W’, X.Y.Z, X.Y’.Z, W'.Y’.Z’.

A sum-of-products expression is a logical sum of product terms. Example:
Z’+W.X.Y+X.Y’.Z+W’.Y’.Z.

A product-of-sums expression is a logical product of sum terms. Example:
Z'.(W+X+Y).(X+Y’+Z).(W'+Y’+Z).

Electronic Circuit Simulation Page 3 of 86 Effective Date: 10 Apr 2017

The canonical sum of a logic function is a sum of the product terms corresponding to
truth-table rows (input combinations) for which the function produces a 1 output.
Function F of Table 2.1 can be described below:

F = X,Y,Z (0,2,4,5,7)
= X’.Y’.Z’ + X’.Y.Z’+ X.Y’.Z' + X.Y’.Z+X.Y.Z

Electronic Circuit Simulation Page 4 of 86 Effective Date: 10 Apr 2017

X Y Z F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table 2.1

Hence the notation X,Y,Z (0,2,4,5,7) is the sum of product terms corresponding 0, 2, 4,
5, and 7 with variables X, Y, and Z.

Electronic Circuit Simulation Page 5 of 86 Effective Date: 10 Apr 2017

The canonical product of a logic function is a product of the sum terms corresponding
to input combinations for which the function produces a 0 output. Function F in Table
2.1 can also be described using canonical product:

F = X,Y,Z (1,3,6)
= (X+Y+Z').(X+Y'+Z’).(X'+Y’+Z)

Hence the notation X,Y,Z (1,2,6,7) is a the product of sum terms corresponding to 1, 2,
6 and 7 with variables X, Y, and Z.

In Summary, there are five possible representations for a combinational logic function:

- A truth table.
- Sum of Product
- Product of Sum
- Canonical Sum
- Canonical Product

Electronic Circuit Simulation Page 6 of 86 Effective Date: 10 Apr 2017

Switching-Algebra

The following three laws are the same for Boolean algebra as they are for ordinary
algebra:

1. Commutative law of addition and multiplication:
 eg. A + B = B + A
 AB = BA
2. Associative law of addition and multiplication:
 eg. A + (B + C) = (A + B) + C
 A(BC) = (AB)C
3. Distributive law:
 eg. A(B+C) = AB + AC
 (A+B)(C+D) = AC + AD + BC + BD

These three laws hold true for any number of variables.

Electronic Circuit Simulation Page 7 of 86 Effective Date: 10 Apr 2017

In addition to the basic Commutative, Associative, and Distributive laws, several
Boolean identities and theorems are very useful in simplifying Boolean logic equations
and logic circuits. They are listed below:

B
BAB

C

A' = AB A'+
 = A' +A 10 Rule

A =)'A' (9 Rule
1 = A' +A 8 Rule

0 =A'A 7 Rule
A =A A +A 6 Rule

A =A A A 5 Rule
1 = 1 C B +A 4 Rule

A = 0 +A 3 Rule
A = 1 A 2 Rule

0 = 0B A 1 Rule

DeMorgan's Theorem is another useful theorem:

(X1 + X2 + X3+…….+ Xn)’= X1’. X2’ . X3’ ………. Xn’

(X 1 . X2 . X3……..Xn)’= X1’ + X2’ + X3’ + …… + Xn’

Electronic Circuit Simulation Page 8 of 86 Effective Date: 10 Apr 2017

Example:

Use DeMorgan’s theorem to convert the following SOP expression to POS. (Solution
will be given during lecture.)

 (A’.B.C + A.B’.C + A.B.C’)’

Combinational logic circuit design usually starts with a description of the problem.
We call this circuit description. For example, we may be asked to design a three bits
even number detector. A logic function described in this way can be designed directly
from the canonical sum or product expression.

 F = N2,N1,N0 (2,4,6)

This circuit can be synthesise directly using AND, NOT and OR gate. This is shown in
Figure 2.1.

Electronic Circuit Simulation Page 9 of 86 Effective Date: 10 Apr 2017

Figure 2.1 Even number detector using mixture of gates

However, for most technology, NAND and NOR gates are faster. Therefore, we may
want to manipulate the equations so that the circuit consists of NAND or NOR gate
only. This process is call circuit manipulations.

Electronic Circuit Simulation Page 10 of 86 Effective Date: 10 Apr 2017

Figure 2.2 Even number detector using NAND gates only

Electronic Circuit Simulation Page 11 of 86 Effective Date: 10 Apr 2017

Finally, in order to use minimal number of gates, we can perform a combinational
circuit minimisation using K-map.

Figure 2.3 K-map and simplified circuit

Electronic Circuit Simulation Page 12 of 86 Effective Date: 10 Apr 2017

Karnaugh Maps

The Karnaugh map (K-map) is a graphical device used to simplify a logic equation or
to convert truth table to its corresponding logic circuit in a simple, orderly process. K-
map's practical usefulness is limited to six variables. This topic will be limited to
problems with up to four inputs, since five- and six-input problems are too involved
and are best done by a computer program.

The labelling of input values on the K-map is done to assure that there is only one
input variable that changes between adjacent cells. Two, three, four-variables K-maps
are shown in Figure 2.4.

Electronic Circuit Simulation Page 13 of 86 Effective Date: 10 Apr 2017

0A
 B

 00

AB
 C 00 01 11 10

1

1

0

10

 11

 01

 11

 10 10

 01

 00

 AB
 CD

Figure 2.4 Two-variable, three-variable, and four-variable Karnaugh maps

Electronic Circuit Simulation Page 14 of 86 Effective Date: 10 Apr 2017

Rules for Grouping Cells for Simplification:

You can choose to group the 1s or the 0s that are in adjacent cells according to the
following rules, by drawing a loop around those cells:

1. Adjacent cells are cells that differ by only a single variable.
2. The 1s or 0s in adjacent cells must be combined in groups of 1,2,4,8,16, and so on.
3. Each group of 1s or 0s should be maximised to include the largest number of

adjacent cells as possible in accordance with rule 2.
4. Every 1s or 0s on the map must be included in at least one group. There can be

overlapping groups if they include noncommon 1s or 0s.

Electronic Circuit Simulation Page 15 of 86 Effective Date: 10 Apr 2017

Example:
Simplified the equation X=ABC(3,4,5,6,7) by circling the 0s.

A B C X

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

00

01

AB

10

C

1 1

1 0

0 0

0 0

11

10

Figure 2.5 K-map with three input variable

Electronic Circuit Simulation Page 16 of 86 Effective Date: 10 Apr 2017

Example:

Simplified the term from the K-map shown in Figure 2.6 by using the rules of
grouping 0s cell for simplification and simplifying expression rules.

Electronic Circuit Simulation Page 17 of 86 Effective Date: 10 Apr 2017

00

01

11

10

00 01 11 10

0 1 0 1

0 1 0 0

0 1 1 0

0 1 1 0

BA
DC

Figure 2.6 Four inputs K-map

Electronic Circuit Simulation Page 18 of 86 Effective Date: 10 Apr 2017

"Don't Care" Conditions

"Don't Care" condition is defined as input conditions for which there are no specified
output level. It is usually because these input condition will never occur.

When the input combinations will not occur, the output states are filled in on the truth
table and in the K-map as a X, and are referred to as don't care states. The "don't care"
conditions should be considered as a 0 or 1 to produce K-map that yields the simplest
expression.

Electronic Circuit Simulation Page 19 of 86 Effective Date: 10 Apr 2017

Example:

00

01

11

10

00 01 11 10

0 0 x 0

1 1 x x

1 1 x 0

1 0 x x

BA
DC

Electronic Circuit Simulation Page 20 of 86 Effective Date: 10 Apr 2017

00

01

11

10

00 01 11 10

0 0 x 0

1 1 x x

1 1 x 0

1 0 x x

BA
DC

Figure 2.7 Using of don’t care state

Electronic Circuit Simulation Page 21 of 86 Effective Date: 10 Apr 2017

2.2 Case Study on Combinational Circuit Design

0to9decoder Design (See Lab 4)

Figure 2.8 Sample decoder (0to9decoder) circuit

Electronic Circuit Simulation Page 22 of 86 Effective Date: 10 Apr 2017

Finite State Machine Design

Latches and Flip-Flops
The most commonly used latches and flip-flops are:

S-R latch

R

S

Q

/Q

Logic symbol

S

R

Q

/Q

S

R

Logic circuit

Electronic Circuit Simulation Page 23 of 86 Effective Date: 10 Apr 2017

S R Q /Q Operation
0
0
1
1

0
1
0
1

Q0
0
1
?

/Q
1
0
?

Hold (no
change)
Reset
Set
Invalid
(Ambiguous)

S

R

Q

/Q

Figure 2.9 Logic symbol, logic circuit, function table and waveform for S-R latch

Electronic Circuit Simulation Page 24 of 86 Effective Date: 10 Apr 2017

S-R latch with enable pin

S

R

Q

Q’

S

R

Q

Q’
EN EN

S

R

Q

/Q

EN

 Logic Symbol Logic Circuit

Electronic Circuit Simulation Page 25 of 86 Effective Date: 10 Apr 2017

S R E
N

Q /Q Operation

0
0
1
1
x

0
1
0
1
x

1
1
1
1
0

Q0

0
1
?

Q0

/Q
1
0
?

/Q

Hold (no
change)
Reset
Set
Invalid
(Ambiguous)
Hold (no
change)

"X" indicates "don't care"

Function Table

Figure 2.10 Logic symbol, circuit and function table for S-R latch with enable pin

Electronic Circuit Simulation Page 26 of 86 Effective Date: 10 Apr 2017

D latch

D Q

Q’

D Q

Q’ENEN

S
Q

/Q

EN

 Logic Symbol Logic Circuit

EN D Q Q
0
1
1

X
0
1

Q0
0
1

0Q
1
0

"X" indicates "don't care"

Function Table

Figure 2.11 Logic symbol, logic circuit and function table for S-R latch

Electronic Circuit Simulation Page 27 of 86 Effective Date: 10 Apr 2017

Edge-triggered D flip-flop

D Q

Q’

D Q

Q’EN

CLK

D Q

Q’EN
D Q

Q’

D Q

Q’CLKCLK

 Logic Symbol Logic Circuit

Electronic Circuit Simulation Page 28 of 86 Effective Date: 10 Apr 2017

CLK D Q Q
No positive

clk edge

X
0
1

Q0
0
1

0Q
1
0

Function Table

Figure 2.12 Logic symbol, logic circuit and function table for D flip-flop

Electronic Circuit Simulation Page 29 of 86 Effective Date: 10 Apr 2017

Edge-triggered J-K flip-flop

Q

Q

J

K
CLK

Logic Symbol

1

2

3

4CLEAR

SET
Q

Q

NAND FFPulse-steering

CLK
J

K

CLK
Edge

detection

Logic Circuit

Electronic Circuit Simulation Page 30 of 86 Effective Date: 10 Apr 2017

J K CLK Q (output)
0
0
1
1

0
1
0
1

 Q0 (no change)
0 (reset)
1 (set)
Q0(toggle)

Function Table

Figure 2.13 Logic symbol, logic circuit and function table for JK flip-flop

Electronic Circuit Simulation Page 31 of 86 Effective Date: 10 Apr 2017

T flip-flop

Q

Q
T

Logic Symbol

QJ

K
CLKT

1
D Q

Q’

Q

Q’CLKT

Q

Q’Q

Two possible logic circuit for T flip-flop

Electronic Circuit Simulation Page 32 of 86 Effective Date: 10 Apr 2017

T Q Q
No positive

edge

Q0

0Q

0Q

Q0

Function Table

T

Q

Waveform for T flip-flop

Figure 2.14 Logic symbol, circuit and function table and waveform for T flip-flop

Electronic Circuit Simulation Page 33 of 86 Effective Date: 10 Apr 2017

Presetting and Clearing of flip-flops and latches

Most flop-flops and latches come with a Clear and Preset pins for the user to do
asynchronous set or reset. The Clear and Preset pins can be active HIGH or active
LOW.

Clocked synchronous State Machines
"State machines" is a generic name given to a sequential circuit; "clocked" refers to the
fact that their storage elements (flip-flops) employ a clocked input; and “synchronous"
means that all of the flip flops use the same clock signal.

In state machines circuits, all changes at the output will take place under the control of
a periodic sequence of pulses called a clock. Each clock pulse will permit the circuit to
either remain in the present state (present set of flip-flop values) or move to another
state (a new set of flip-flop values). The advantage of clocked sequential circuits is
that glitches that occur due to the imperfect nature of the logic devices will have no
effect. However, to have this advantage, we must choose the clock period such that it
is longer than the worst multiple delay paths.

Electronic Circuit Simulation Page 34 of 86 Effective Date: 10 Apr 2017

There are two main types of State machine, Mealy machine and Moore machine. For a
Mealy machine, the outputs are function of both the inputs and the current states. For
Moore machine, outputs are function of only the current states. Figure 3.17 show the
structures of Mealy and Moore machines.

excitation
Next
State
Logic
 F

State
Memory

Output
Logic
 G

Inputs

Clock

Outputs

Mealy Machine

Next state and output logic blocks are combinational logic blocks. State memory is a
sequential logic block.

Electronic Circuit Simulation Page 35 of 86 Effective Date: 10 Apr 2017

excitation
Next
State
Logic
 F

State
Memory

Output
Logic
 G

OutputsInputs

Clock

Moore Machine

Figure 2.15 Structures of Mealy and Moore Machines

Electronic Circuit Simulation Page 36 of 86 Effective Date: 10 Apr 2017

Clocked Synchronous State-Machine Design
The characteristic equations for various devices are listed below. These equations are
needed when we analyse the state machine. Q* denotes the next state.

S-R latch/flip flop : Q* = S+R’.Q
D latch/flip flop : Q* = D
J-K flip flop : Q* = J.Q’ + K’.Q
T flip flop : Q* = Q’
T flip flop with enable: Q* = EN.Q’ + EN’.Q

The synthesis (design) of the sequential circuits consists of obtaining a table of
diagram for the time sequence of inputs, outputs and internal states. Detail steps are as
follows:

Electronic Circuit Simulation Page 37 of 86 Effective Date: 10 Apr 2017

(1) Construct a state/output table corresponding to the word description or
specification, using generic names for the states.

(2) (Optional) Minimise the number of states in the state/output table.
(3) Choose a set of state variables and assign state-variable combinations to the name

states.
(4) Substitute the state-variable combinations into the state/output table that shows

the desired next state-variable combination and output for each state/input
combination.

(5) Choose a flip-flop type (e.g., D or J-K) for the state memory. In most cases, you’ll
already have choice in mind at the outset of the design, but this step is your last
chance to change your mind.

(6) Construct an excitation table that shows the excitation values, required to obtain
the desired next state for each state/input combination.

(7) Derive excitation equations from the excitation table.
(8) Derive output equations from the state/output table.
(9) Draw a logic diagram that shows the state-variable storage elements and realises

the required excitation and output equations.

Electronic Circuit Simulation Page 38 of 86 Effective Date: 10 Apr 2017

Design of a Moore machine, two-bit up/down counter which output, Z= ‘1’ when
count = ‘11’
The outputs for the Moore-type circuits are independent of the inputs, i.e. the outputs
are functions of the present state only. The Moore outputs change their values only
when the state changes because of a change of the inputs. The figure below shows an
example of a moore state diagram and state table. (Note synchronous counter is a
special type of synchronous machine, the state variables themselves are the outputs of
the state machines.)

Electronic Circuit Simulation Page 39 of 86 Effective Date: 10 Apr 2017

A/00
Z=0

C/10
Z=0

D/11
Z=1

B/01
Z=0

UP

UP’

UP

UP

UP’UP UP’

UP’

Figure 2.16 Two-bit up/down counter, Moore Machine

The state diagram above represents a synchronous circuit with four states, A, B, C and
D, and an input variable, UP. In each state it is necessary for the circuit to be able to
determine which state it is in and what the current value of UP is, and then to set up the
FF inputs such that the correct state is entered when the clock input occurs. The arrows
connecting the states represent the occurrence of a clock input and the variables
alongside the arrows show the input condition that causes that path to be followed.

Electronic Circuit Simulation Page 40 of 86 Effective Date: 10 Apr 2017

Present
State
Q1Q0

Next State
Q1*Q0*

Output
Z

UP=0 UP=1
A,00 D,11 B,01 0
B,01 A,00 C,10 0
C,10 B,01 D,11 0
D,11 C,10 A,00 1

Table 2.2 State/Transition/Output table

The implementation of a sequential circuit with n states will require m FFs where
2m=n. The outputs of these FFs are called the state variables and are used to identify
which state the circuit is in.

The next step is to decide what FF to use. For this example, both approaches are used.

Electronic Circuit Simulation Page 41 of 86 Effective Date: 10 Apr 2017

Using D FF

We can determine the next-state equations for each of the two state bits. Q1* and Q0*
represent the values of the next state function. The present state values are represented
by Q1 and Q0. The karnaugh maps can be generated easily from the state transition
table. Each row corresponds to a state and each column corresponds to a combination
of the inputs; the entries in the karnaugh maps correspond to the values of Q1* and
Q0* in the transition table.

The characteristic equation for D flip-flop is Q* = D. Therefore the karnaugh map can
be used to find the minimal equations at the input of D flip-flops. The output equation
can also be obtained from the state/transition/output table. In this case, there is no need
to draw a karnaugh map for the output equation because only two variables are
involved.
Output equation: Z=Q1.Q0

Electronic Circuit Simulation Page 42 of 86 Effective Date: 10 Apr 2017

0 1

00

01

11

10

Q1Q0

UP

1 1

0

1

0 0

0

1

D1 = Q1’.Q0’.UP’ +
 Q1’.Q0.UP +
 Q1.Q0’.UP +
 Q1.Q0.UP’

D0 = Q0’

0 1

00

01

11

10

Q1Q0

UP

0 1

0

1

0 1

1

0

Figure 2.17 Next state and output equations for the counter

Electronic Circuit Simulation Page 43 of 86 Effective Date: 10 Apr 2017

Figure 2.18 Circuit diagram using D FF

Electronic Circuit Simulation Page 44 of 86 Effective Date: 10 Apr 2017

Design of a Mealy machine, two-bit up/down counter with UP pin and output, Z = 1
when count ‘11’ and UP =‘1’
We begin the design process by constructing a state diagram to meet these requirements.
By assigning state A to ‘00’, B to ‘01’, C to ‘10’ and D to ‘11’, we arrive at the state
diagram below:

A/00

C/10 D/11

B/01

UP/Z=0

UP’/Z=0

UP/Z=0

UP/Z=0

UP’/Z=0
UP/Z=1 UP’/Z=0

UP’/Z=0

Figure 2.19 Two-bit up/down counter (Mealy Machine)

The state table for this sequence detector can easily be constructed from the state
diagram.

Electronic Circuit Simulation Page 45 of 86 Effective Date: 10 Apr 2017

Present
State
Q1Q0

Next State
Q1*Q0*,Output

Z
UP=0 UP=1

A,00 D,11,0 B,01,0
B,01 A,00,0 C,10,0
C,10 B,01,0 D,11,0
D,11 C,10,0 A,00,1

Table 2.3 State/Transition/Output table for two-bit up/down counter (Mealy Machine)

Before we can derive the flip-flop input equations, we must specify the type of flip flop
to be used in the design. For this example, let us use D flip-flops. (Note: the K map is
exactly the same shown in Figure 2.17. The only difference is the output equation which
is now a function of both input and the states.)

Electronic Circuit Simulation Page 46 of 86 Effective Date: 10 Apr 2017

Z = Q1.Q0.UP

0 1

00

01

11

10

Q1Q0

UP

0 0

1

0

0 0

0

0

Figure 2.20 Kmap for output equation

From equations derived from Figure 2.17 and Figure 2.20, we can draw the circuit for
the state machine.

Electronic Circuit Simulation Page 47 of 86 Effective Date: 10 Apr 2017

Figure 2.21 Circuit for the Mealy Machine

Electronic Circuit Simulation Page 48 of 86 Effective Date: 10 Apr 2017

2.3 Case Study on Finite State Machine Design

0to9counter Design (See Lab 3)

Figure 2.22 Sample counter (0to9counter) circuit

Electronic Circuit Simulation Page 49 of 86 Effective Date: 10 Apr 2017

2.4 Digital Library Modeling and Development

Library Modeling

Level of Abstractions
In general, four different types of objects can be identified in the design process of
electronics system: transistors, gates, registers and processor components. These
abstractions are summarised in Table 2.4.

Electronic Circuit Simulation Page 50 of 86 Effective Date: 10 Apr 2017

Level Behavioural
Forms

Library Physical
Objects

Transistor Differential
equations,
Current-voltage
diagrams

Transistors,
resistors,
capacitors

Analogue and
digital Cells

Gate Boolean
equation, Finite-
state machines
(FSM)

Gates, Flip-flops Modules,
Units

Register Algorithms,
flowcharts,
instruction sets,
generalised FSM

Adders,
comparators,
registers, counters

Microchips

Processor Executable
specification,
programs

Processors,
controllers,
memories, ASICs

Printed-circuit
boards, multi-
chips modules

Table 2.4 Level of Abstraction

Electronic Circuit Simulation Page 51 of 86 Effective Date: 10 Apr 2017

Transistor Level - The main components in the Library for the transistor level are
transistors, resistors and capacitors, which are combined to form analog and digital
circuit that can satisfy a given functionality. This functionality is usually described by
a set of differential equations or by some type of current-voltage relationships. The
physical representation of these analogue and digital circuits, called cells, would
consist of transistor-level components and the wires that connect them.

Gate Level - The main components on the gate level of abstraction are logic gates and
flip-flops. Logic gates are special circuits that perform Boolean operations which are
similar to conjunctions in the English language such as or and and. These cells can be
grouped and placed on the silicon surface to form arithmetic and storage modules or
units that are used as the basic components in the register level. These units are
described behaviourally by means of Boolean equations and finite-state-machine
(FSM) diagrams.

Electronic Circuit Simulation Page 52 of 86 Effective Date: 10 Apr 2017

Register Level - The main components on the register level of abstraction are
arithmetic and storage units, such as adders, comparators, multipliers, counters,
registers, register files, queues and data paths. Each of these register components is a
module or unit which has fixed dimensions, a fixed propagation time and a fixed
position for the inputs and outputs located on its boundary.

These register components can be assembled and interconnected into microchips,
which are used as the basic components on the next-higher level of abstraction. In
general, these microchips are described by flowcharts, instruction sets, generalised
FSM diagrams or state tables.
Processor Level - The highest level of abstraction presented in Table 2.4 is called the
processor level, since the basic components on this level are processors, memories,
controllers, and interfaces, in addition to the custom microchips called application-
specific integrated circuits (ASIC). Generally, one or more of these components are
placed on a printed-circuit board and connected with wires that are printed on the
board.

Electronic Circuit Simulation Page 53 of 86 Effective Date: 10 Apr 2017

In some cases we can reduce the dimensions of the board by using a silicon substrate
instead of a printed-circuit board to connect the microchips, in which case the package
is called a multi-chip module. The systems that are composed from these processor-
level components are usually described behaviourally by either a natural language, e.g.
a hardware description language, or an algorithm written in a programming language.

Design Process
During the design process of an electronic digital system, any one of these levels of
abstraction may be used one or more times, depending on how many different goals,
technologies, components, libraries and design alternatives we want to explore.

We must choose carefully an efficient design methodology that determines the proper
subset of abstraction levels, synthesis tasks at the order in which they are executed,
and the type of CAD tools available during the execution of each task in the design
process.

Electronic Circuit Simulation Page 54 of 86 Effective Date: 10 Apr 2017

The most popular methodology consists of building a library for a certain abstraction
level, then using synthesis to convert a behavioural description into a structure that can
be implemented with the components from this library.

In real practice, the design process is always heavily influenced by the following
factors:
- the nature of the product being designed
- how soon the product must be brought to market
- the particular technology used for its manufacture
- the company’s organisational structure
- the design team’s experience
- the availability of CAD tools
- the amount of budget allocated.

In general, the design process can be divided into the following steps: Design
Specification, Library Development and Design Synthesis, Design Analysis,
Documentation and Manufacturing.

Electronic Circuit Simulation Page 55 of 86 Effective Date: 10 Apr 2017

Library Development

Library development is one the most important step in any design process. It has great
impact on the final design.

Once the high-level block diagram has been developed in the specification phase, it
must be iteratively refined or decomposed into smaller components. The goal of this
process is to ensure that the product contains nothing but the predefined components
from a library of components that has been characterised for a particular
manufacturing technology.

Electronic Circuit Simulation Page 56 of 86 Effective Date: 10 Apr 2017

Different EDA tools require different information for the database it is working on.
These information are usually represented in the form of library/model/ rules. Some of
these library/model/rules are generic in nature (e.g. the behaviour of an NAND
function, or a pentium), but many of them are specific to a particular foundry. (e.g. the
propagation delay of a NAND gate from CSM most likely will be different from a
NAND gate from TSMC).

The component in the library must be designed, tested, and fully documented so that
designer can use them without having to analyse their structure. The content of EDA
library typically include the followings:
- The component’s functionality, the names of inputs and outputs and the typical

application i.e. relation between the outputs and inputs.
- The component’s physical dimensions, the position of inputs and outputs and the

packaging information i.e. Physical device parameters: e.g. parameter of a
transistor, resistor, area etc

- The electrical constraints, the power supply requirements, the current and voltage
ranges that are allowed at the inputs and outputs and the heat dissipation.

Electronic Circuit Simulation Page 57 of 86 Effective Date: 10 Apr 2017

- The voltage waveforms for inputs and outputs, the timing relationships between
them, and the critical delays from inputs to outputs eg propagation delay, set-
up/hold timing requirement etc.

- The components models to be used by CAD tools for simulation, synthesis,
physical design and testing.

- The symbol and abstract of the components ie graphical representation of the
model and the layout of the model.

- Wire load Model

Electronic Circuit Simulation Page 58 of 86 Effective Date: 10 Apr 2017

Digital Library Modelling

Definition of timing parameters:

Clock

D

Q

t t

t

t

t

t

SU
H

PLH

TLH THL

PHL

Figure 2.23 Flip-Flop timing parameters

Electronic Circuit Simulation Page 59 of 86 Effective Date: 10 Apr 2017

Propagation Delay (tPHL and tPLH)
The amount of time it takes for the output of the flip-flop to change its state from a clock
trigger or asynchronous set or reset. It is defined from the 50% point of the input pulse
to the 50% point of the output pulse.
tPHL : The propagation time from HIGH to a LOW.
tPLH : The propagation time from LOW to HIGH.

Output Transition Time
The output transition time is defined as the rise time or fall time of the output.
Rise Time (tTLH) : is the 10% to 90% time, or LOW to HIGH transition time.
Fall Time (tTHL) : is the 90% to 10% time, or HIGH to LOW transition time.

Setup Time (tSU)
The time interval immediately preceding the active transition of the clock pulse during
which the control or data inputs must be stable (at a valid logic level).

Electronic Circuit Simulation Page 60 of 86 Effective Date: 10 Apr 2017

Hold Time (tH)
The amount of time that the control or data inputs must be stable after the clock trigger
occurs.

Removal Time (trem)
The time between the end of an overriding asynchronous input, such as clear or reset
and the earliest allowable beginning of a synchronous clock input.

Operating Frequency (fmax)
The maximum input clock frequency of the clock input to the flip-flop. If fmax is not
listed, an approximate maximum frequency of operation can be found by taking the
reciprocal of the worst case average propagation delay time (tPHL + tPLH) /2. If the
calculated fmax is larger than the listed fmax, always used the lower value for fmax.

Electronic Circuit Simulation Page 61 of 86 Effective Date: 10 Apr 2017

Content of Digital Library
The content of digital library is as follows:

- Function : Boolean equation (e.g. !((A B)+C))
 State table (e.g. state table for Flip-Flop)
- Signal Flow Direction : Input, output or bi-directional
- Loading : Capacitive Load at input and output
- Unateness : Positive, negative or unknown
- Timing Arc : Logic 0 to logic 1 propagation delay
 Logic 1 to logic 0 propagation delay
 Logic 0 to hi-Z propagation delay
 hi-Z to logic 1 propagation delay
 Logic 1 to hi-Z propagation delay
 hi-Z to hi-Z propagation delay
 Logic 0 to Logic 1 transition time
 Logic 1 to Logic 0 transition time
- Timing Requirement : Setup time, Hold time
 Minimum pulse width

Electronic Circuit Simulation Page 62 of 86 Effective Date: 10 Apr 2017

- Operating Condition : Derating in performance for Voltage variation;
 Derating in performance for Temperature variation;
 Derating in performance for foundry process variation
- Wire load : Wire length estimation

Digital Library development/Characterisation of timing model
Process of a library development for a timing model is as follow:

- Perform spice simulations using spice model from the foundry.
- Measure the performance from the simulation result.
- Design test structure for fabrication.
- Co-relate silicon performance with spice simulation.

Timing Library development
A more complete library must be characterised at different operating condition and
different input condition. Most EDA tools adopted a table look-up approach for
estimating delay. A 2-D table model is most commonly used for deep-sub micron
technology. The delay is a function of input skew and the total load at output.

Electronic Circuit Simulation Page 63 of 86 Effective Date: 10 Apr 2017

Example of a 2-input NAND Gate:
1. Measure delay and output transition from input pin A to output pin Y for different

output load and input transition.
2. Repeat (1) for input pin B.
3. Repeat (1) and (2) for different operating condition.

Sample Results for a inverter output Pin Y w.r.t Pin A at typical corner (operation
conditions):

Electronic Circuit Simulation Page 64 of 86 Effective Date: 10 Apr 2017

Propagation delay for 0 to 1 transition

 Output

Load (pf)

Input fall
time (ns)

0.01 0.04 0.14 0.54

0.08 0.097 0.174 0.525 1.607
0.60 0.160 0.257 0.611 1.686
1.20 0.199 0.317 0.721 1.785
3.00 0.258 0.425 0.954 2.113

Electronic Circuit Simulation Page 65 of 86 Effective Date: 10 Apr 2017

Propagation delay for 1 to 0 transition

Output

Load (pf)

Input rise
time (ns)

0.01 0.04 0.14 0.54

0.08 0.081 0.136 0.391 1.178
0.60 0.162 0.242 0.510 1.293
1.20 0.216 0.322 0.650 1.430
3.00 0.321 0.476 0.942 1.860

Electronic Circuit Simulation Page 66 of 86 Effective Date: 10 Apr 2017

Despite taken into consideration of many important factors in library characterisation,
sometime we still are unable to get very good delay estimation in the EDA tool.

Possible causes:
1. For deep sub-micron technology, the delay due to wire load is significant (for

0.35um, 40% is not uncommon). Tools like logic synthesis, pre-layout simulator
can only use estimated wire load.

2. Timing is characterised only at a few input conditions/operating conditions. Need
to be interpolated or extrapolated.

Electronic Circuit Simulation Page 67 of 86 Effective Date: 10 Apr 2017

2.5 Digital Simulation

Digital simulation allows you to model the behaviour of a circuit in terms of logical
values of signals and the timing of events, before actually building. Digital Simulators
are mainly events driven simulators, they calculate and store changes on signals (or
nodes) in a circuit’s network.

Digital simulators do not calculate the precise voltage or current values for nodes in a
circuit, they only have to track the changes to the state of each node in the system.
These states are typically a combination of logic levels (e.g. 0, 1 or unknown) and
signal strength (strong, resistive, high impedance or indeterminate).
There are many factors that influence the accuracy of the digital simulators including:
- The number of logic states defined by the simulators
- The method used to model delays
- The method used (if any) to model the effect of fan in, fan out, loading,

temperature and power

Electronic Circuit Simulation Page 68 of 86 Effective Date: 10 Apr 2017

When using a digital simulator, you apply stimulus to a software model of a circuit and
view the resulting circuit outputs. Stimulus can be provided to the simulator in many
forms including waveforms, simulator commands, test vector etc. Similarly the output
can be in many forms including text window, waveform etc. Simulating a digital
circuit requires the stimulus and the circuit software model. To understand simulation,
it is useful to think analogies to actual hardware, you need the circuit on the
breadboard and the necessary inputs to test the circuit. Figure 2.24 shows how a
conceptual design, consisting of a collection of component devices, is processed
during simulation.

Electronic Circuit Simulation Page 69 of 86 Effective Date: 10 Apr 2017

The simulator accepts test stimulus and applies this stimulus to the circuit. The
simulator then model your design using the models or components that you have used
in this circuit and reports how the circuit reacts to the stimulus over time. The users
can choose either to look at the response at the final outputs or/and the response at the
intermediate nodes within the circuit.

Advantages of doing a digital simulation
The reasons for doing digital simulation are as follows:
- Simulation allows you to experiment with components that you don’t actually

have available.
- Simulation saves time. Once you have become familiar with the simulation

methods, you will find that setting up and running a simulation takes far less time
than a hardware prototype.

- Simulation gives you greater control and you can observe the inputs and outputs
of each component in the circuit.

- Simulation allows you to modify the design easily.

Electronic Circuit Simulation Page 70 of 86 Effective Date: 10 Apr 2017

Stimulus Response

Circuit

Z

Y

X

B

A

B

A

Z
Y

X

Figure 2.24 Basic flow during simulation

Electronic Circuit Simulation Page 71 of 86 Effective Date: 10 Apr 2017

Timing Modes
Each mode consists of settings that make simulation speed and accuracy tradeoffs.
You can set the mode for the design when you invoke, or you can use individual
commands on individual instances. The timing modes are as follows:

Functional Simulation – Zero delay
In Functional simulation the simulator helps you to determine if the basic operation of
the circuit is correct, without regard to the actual operating speeds and internal delays.
Zero delays between events are assumed.

Functional Simulation - Unit delay
This mode provides high performance at the expense of accuracy. You can use this
mode when debugging design functionality, find out the race condition and glitches
and other circuit errors that results from such condition. With unit delay, a single delay
time is assigned to every gate in the design i.e. all output and I/O pins have a rise and
fall delay of one time step and all input pins have a rise and fall delay of zero time
step. The simulator ignores all technology files.

Electronic Circuit Simulation Page 72 of 86 Effective Date: 10 Apr 2017

Timing Simulation
In Timing simulation, the simulator actually calculates and models the delays between
events, based on the knowledge that it has about the propagation delays on signals,
gate switching delays, rise and fall times and other factors. It determines how your
design will behave when it is operated at speed in the final implementation.

Timing Simulation - Linear timing
This mode provides straight-line approximations of the timing that is defined by the
associated technology files. In this mode, you can debug the effects of timing on your
design's functionality, but only if the components include linear technology files. In
this mode, timing is computed significantly faster than when you use full technology
files.

Timing Simulation - Linear timing with constraint checking
This mode provides straight-line timing approximations with full constraint checking.
You can use this mode to produce timing violation messages. As with the linear timing
mode, your components must provide linear technology files. The next step is to use
full timing with constraint checking.

Electronic Circuit Simulation Page 73 of 86 Effective Date: 10 Apr 2017

Timing Simulation - Full timing
This mode provides timing accuracy without timing constraint checking. This mode
simulates the effects of timing on the design logic. Full timing consists of the min,
typical, or max values from all technology file-specified delay equations, rise and fall
pin delays, and BLM and VHDL delay instructions. Simulating a design with complete
timing will result in a more accurate reflection of the actual design’s performance. A
simulator that models actual gates and signal delays has a lot more to keep track of.
Full timing simulation is used only when you have decided on the final
implementation technology.

Timing Simulation - Full timing with constraint checking
This mode provides complete timing accuracy with full constraint checking. You can
use this timing mode to produce timing violation messages during full-circuit
debugging operations. This mode uses the min, typical, or max values from all
technology file-specified delay equations, rise and fall pin delays, and BLM and
VHDL delay instructions; it also checks for constraints and spike, contention, and
hazard violations.

Electronic Circuit Simulation Page 74 of 86 Effective Date: 10 Apr 2017

Logic Values and Drive Strengths
There are several signal states. Each signal state is a combination of a logic value and
a drive strength. Logic value and drive strength are defined as follows:

Logic value is a Boolean value that indicates the level of a signal. The logic values are:

‘0’ A low signal level
‘1’ A high signal level
‘X’ An unknown signal level

Drive strength is a value that allows the simulator to resolve signal contention and to
simulate effects of different technologies. The drive strengths are:

S A strong signal strength
R A resistive signal strength
Z A high impedance signal strength
I An indeterminate signal strength

Electronic Circuit Simulation Page 75 of 86 Effective Date: 10 Apr 2017

2.6 Hierarchical Design and System Partitioning

Hierarchy

The use of hierarchy or “divide and conquer”, involves dividing a system/module into
sub-modules and then repeating this operation on the sub-modules until the complexity
of the sub-modules is at an appropriately comprehensible level of detail. This approach
is sometimes referred to as design partition and sub-partition of the modules. Partition
of the design in general is based on functionality. Example of design partition may be
based on digital and analog blocks or digital blocks with distinct functions.

Partitioning

Partitioning can also be done based on combinational logic and sequential logic
blocks. Within the main blocks, sub-partition is done on the block and this approach is
to descend into the hierarchy until the level where modules are defined in terms of
standard functions like adder, multiplexer, comparators, registers etc.

Electronic Circuit Simulation Page 76 of 86 Effective Date: 10 Apr 2017

Regularity

Hierarchy involves dividing a system into a set of sub-modules/sub-blocks. However,
hierarchy alone does not necessarily solve the complexity problem. For instance, the
repeatedly division of the hierarchy of a design into different sub-modules but will still
end up with a large number of different sub-modules/sub-blocks.

With regularity as a guide, the designer attempts to divide hierarchy into a set of
similar building blocks. The use of iteration to form arrays of identical cells/sub-
blocks is an illustration of use of regularity in a system/IC design. This allows the
reuse of sub-blocks. Regularity can exist at all levels of the design hierarchy.
Regularity allows an improvement in productivity by reusing specific blocks/designs
in a number of places, thus reducing the number of different designs that need to be
completed.

Electronic Circuit Simulation Page 77 of 86 Effective Date: 10 Apr 2017

Modularity

The tenet of modularity adds to hierarchy and regularity the condition that sub-
modules have well defined functions and interfaces (interconnections with other
modules). The interconnections, along with functionality must also be defined in an
unambiguous manner.

Modularity helps the designer to clarify and document an approach to a problem and
also allows a design system to more easily check the attributes of a module as it is
constructed. The ability to divide a task into a set of well-defined modules also helps
in a huge design where different modules are design by different engineers.

The correct decision regarding modularity allows one to break up a system into blocks
with confidence that when the blocks are re-combined, the system will function as
specified.

Electronic Circuit Simulation Page 78 of 86 Effective Date: 10 Apr 2017

Locality

Locality usually refers to “time locality”; that is to mean to pay attention to clock
generation distribution network of the system. The approach is to ensure that timing
critical sub-blocks (share the same clock for synchronisation) must be kept as close as
possible.

If a system have several analogue and digital blocks, it would be necessary to
physically group the analogue and digital blocks separately and thus ensuring system
having better noise immunity as high speed digital circuit generate noise in the power
lines.

Electronic Circuit Simulation Page 79 of 86 Effective Date: 10 Apr 2017

2.7 Digital Design Implementation

Overview

Once a design has been created, simulated, and synthesized, the next step is
implementation of the design into the particular complex electronic device. Figure
2.25 shows a sample implementation process for complex electronic device. Usually
the implementation process uses the tools supplied by the device (e.g., FPGA) vendor.
The functions that were defined in the design have to be matched to the available
blocks, gates, and other logic elements on the chip. Some basic steps in implementing
a design are:

 Floorplan
 Translate
 Map
 Place and Route

Electronic Circuit Simulation Page 80 of 86 Effective Date: 10 Apr 2017

Figure 2.25 Implementation Process for Complex Electronics Device

Electronic Circuit Simulation Page 81 of 86 Effective Date: 10 Apr 2017

Floorplanning is the process of identifying structures that should be placed close
together, and allocating space for them. In designing complex electronics, there are
multiple goals that must be met, and the goals often conflict. Finding the best balance
between the various goals and requirements is something of an art. Some goals are:

 Minimize space on the chip (allows choice of less costly chips)
 Meet or exceed required performance
 Place everything close to everything else to minimize transmission time in the

signal paths

Translation involves converting the results of the synthesis process to the format
supported internally by the vendor's place-and-route tools. The incoming netlist is
checked for adherence to design rules and is then optimized for the chip.

Translation may also be referred to as compilation or compiling. This process is
automatic, but it takes some wading through the reports produced by the tool to verify
that the translation/compile was correct. An intelligent post-processor, rather than the
designer (or worse, the quality assurance engineer), should be used to find syntax and
binding errors - otherwise you will have to do this for each design modification!

Electronic Circuit Simulation Page 82 of 86 Effective Date: 10 Apr 2017

Mapping takes the logic blocks and determines what logic gates and interconnections
on the device should be used to implement those blocks. During the mapping step, the
functions within the device (such as counters, registers, or adders) are aligned with the
logic resources of the chip. The exact process is device dependent. For example,
FPGAs have look-up tables that perform logic operations. The mapping tool (part of
the vendor's tool suite) collects the gates defined by the netlist into groups that will fit
within the look-up tables.

Place and Route is the process of placing the logic blocks in the best spots on the chip
to achieve efficient routing. Items that the place and route tool will look at include
routing length (how far does a signal have to travel), track congestion (how many
signals are coming into or out of an area), and path delays. While the process is usually
performed automatically by the vendor-supplied tools, the designer can specify some
parameters and constraints that the final layout has to meet, including:

 the initial placement of the cells
 a position for each physical connector
 a form factor

Electronic Circuit Simulation Page 83 of 86 Effective Date: 10 Apr 2017

Programming the device

Once the design is successfully verified and found to meet timing and performance
requirements, the final step is to actually program the device. At the completion of
placement and routing, a binary programming file is created. It's used to configure the
device. The process of programming is usually dependent on the type of memory used
to store the device configuration and on the device type (e.g., FPGA or ASIC). ASICs
are manufactured, rather than programmed by the end-user, and verification of the
design is critically important. Re-generating an ASIC is costly, both in dollars and in
schedule time. FPGAs and other programmable devices are programmed by the end-
user, either in-circuit or in a special programming device. Usually, a software tool
running on a PC will interface with the programmable device and download the
program using the appropriate format.

Electronic Circuit Simulation Page 84 of 86 Effective Date: 10 Apr 2017

Entrance Criteria

The following criteria should be met prior to beginning the implementation process.

 The design is reviewed and approved.
 Design synthesis was successful.
 Design verification and simulation was successfully performed.

Exit Criteria

At the end of the implementation phase, the following criteria should be met:

The device is programmed with the design.

Electronic Circuit Simulation Page 85 of 86 Effective Date: 10 Apr 2017

2.8 Case Study on Digital System Design Hierarchy, Partitioning and
Implementation

Stop Watch Design (See Chapter 3)

 Figure 2.26 System Partitioning and Hierarchy Design of Stop Watch

Electronic Circuit Simulation Page 86 of 86 Effective Date: 10 Apr 2017

Implementation of Stop Watch Design (See Lab 7)

Figure 2.27 Altera’s FPGA Programmer Tools

