

2014/2015 SEMESTER 2 – SEMESTRAL EXAMINATION

Course : Diploma in Electronics, Computer and Communications Engineering

Module : EG3010 – Microelectronics

Feb/Mar 2015

Time Allowed : 2 hrs

INSTRUCTIONS TO CANDIDATES

- 1. This exam paper consists of **EIGHT (8)** pages <u>including</u> this page.
- 2 This examination paper contains 2 sections.

Section A: 2 Questions Section B: 3 Questions

- 3. Answer ALL questions in Section A. Answer ANY 2 questions in Section B.
- 4. Mask Layout Encoding Table and Stick Diagram Coding Table are provided on Page 8.

SECTION A - ANSWER ALL QUESTIONS (50 Marks)

Question 1

- Explain briefly the need for the following CAD tools used in integrated circuit (a) design.
 - (i) Design Rule Checker (3 marks) (3 marks)
 - (ii) Layout vs Schematic Checker
- (b) For the CMOS layout shown in Figure Q1,
 - (i) draw the corresponding colour-coded stick diagram. (7 marks)
 - (ii) draw the corresponding transistor level schematic and state the output equation at **X** of the circuit. (9 marks)
- Briefly explain why diffusion is not allowed to cross the substrate-well (C) boundary. (3 marks)

Figure Q1

Question 2

- (a) Draw the layout of an NMOS transistor of Width = 4λ and Length = 2λ . Indicate the width and length accordingly. (4 marks)
- (b) Explain how channel length and width of a transistor affects its resistance. Substantiate your answer with relevant equation. (3 marks)
- (c) Name any two of the basic MOS layers and briefly state their characteristics. (4 marks)
- (d) Sketch and label carefully the cross-sectional structure of a CMOS inverter using Nwell process. (6 marks)
- (e) Latch-up is an inadvertent structure found in CMOS structure.
 - (i) Draw the latch-up equivalent circuit and explain what is latch-up.

(4 marks)

- (ii) Give two possible consequences when a latch-up occurs. (2 marks)
- (iii) Suggest one method to minimize the occurrence of latch-up. (2 marks)

SECTION B - ANSWER ANY 2 QUESTIONS (50 Marks)

Question 3

- (a) For the combinational circuit shown in Figure Q3,
 - (i) write the Boolean equation for output, **F**.
 - (ii) draw the transistor level implementation using CMOS **standard gate** concept. (6 marks)
 - (iii) draw the transistor level implementation using CMOS static complex gate concept. (8 marks)

Assume negated signals are readily available.

Figure Q3

- (b) For a 2-input NAND gate driving a load of $1 \square C_g$:
 - (i) determine its tpHL
 - (ii) determine its best case tpLH

(4 marks) (5 marks)

(2 marks)

Assume all transistors used are minimum-sized transistors and $R_{sp} \approx 2.5 R_{sn}$. Give the answer in term of $\tau = R_{sn} \bullet \Box C_g$.

Question 4

- (a) Figure Q4 shows a polysilicon wire segment, not drawn to scale. If it has a sheet resistance of $R_s = R_{spoly} \Omega/\Box$ and a relative capacitance of polysilicon-to-substrate of 1.0 $\Box C_g$, compute the following:-
 - (i) resistance of the polysilicon wire, in terms of R_{spoly}. (4 marks)
 - (ii) capacitance of the polysilicon to substrate, in terms of $\Box C_g$. (4 marks)
 - (ii) time taken to travel this segment of the wire as indicated by the arrow, in terms of τ , where $\tau = R_{sn}^* \Box C_g$. (4 marks)

Figure Q4

- (b) Explain, with the aid of diagrams, the operation of a NMOS pass transistor when:
 - (i) transferring logic High. (5 marks)
 - (ii) transferring logic Low. (5 marks)
- (c) Name and draw the MOS switch that will pass both logic '1' and '0' without degradation. (3 marks)

Question 5

- (a) Figure Q5a shows a 6-transistor SRAM. Using the diagram provided,
 - (i) explain its read and write operation.
 - (ii) explain the need for the sense amplifier circuit. (3 marks)

(6 marks)

Figure Q5a

- (b) List three key differences between Static and Dynamic RAM. (6 marks)
- (c) For the Verilog codes given in Figure Q5b,
 - draw the block diagram and label the input and output pins. (4 marks) (i)
 - (ii) Is clr a synchronous or asynchronous signal? Explain . (2 marks)
 - (iii) explain the functionality of the codes.

```
(4 marks)
```

```
module Exam (clk, clear, up_down, q);
 input clk, clr, up_down;
 output [3:0] q;
 reg [3:0] tmp;
 assign q = tmp;
 always @(posedge clk)
 begin
   if (clr)
      tmp <= 4'b0000;
   else if (up_down)
      tmp \le tmp + 1'b1;
   else
      tmp \le tmp - 1'b1;
 end
endmodule
```

Figure Q5b

Mask Layout Encoding Table

LAYERS	MASK LAYOUT ENCODING	CIF LAYER
n-diffusion (n* active)	MONOCHROME	ND
Polysilicon		NP
Metal 1		NM
Contact cut		NC
Overglass	[]	NG
Implant		NI
Buried contact		NB
p-diffusion (p* active)	▶ P* mask	CAA or CPA
p+ mask		CPP
Metal 2		CMS
VIA	⊞	CVA
NWELL		CPW
VDD or VSS CONTACT		сс

FEATURE	FEATURE (MASK) (MONOCHROME)	
n-type enhancement transistor	(L:W = 1:1) S D G	
n-type depletion transistor	(L:W = 1:1)	
p-type enhancement transistor	p+ mask G	

Stick Diagram Encoding Table

Layer	Colour	Stick Encoding
n-diffusion	Yellow outline, Brown within	
p-diffusion	Dark Brown outline, Brown within	
Polysilicon	Green	
Metal 1	Blue	
Metal 2	Red	
Implant	Yellow dotted line	
Contact - Connect Poly to Metal 1 - Connect Diffusion to Metal 1	Black Solid circle	•
Via - Connect 2 metals	Black	\otimes
*N-well / P-well boundary	Brown dotted line	
*Well tie / Substrate tie	Black Cross	V.dd / V.ss

* only applicable to CMOS process