

2014/2015 SEMESTER 1 – SEMESTRAL EXAMINATION

Course : Diploma in Electronics, Computer and Communications Engineering

Module : EG3010 – Microelectronics

Aug/Sep 2014

Time Allowed : 2 hrs

INSTRUCTIONS TO CANDIDATES

- 1. This exam paper consists of **SEVEN (7)** pages <u>including</u> this page.
- 2 This examination paper contains 2 sections.

Section A: 2 Questions Section B: 3 Questions

- 3. Answer ALL questions in Section A. Answer ANY 2 questions in Section B.
- 4. Mask Layout Encoding Table and Stick Diagram Coding Table are provided on Page 7.

SECTION A – ANSWER ALL QUESTIONS (50 Marks)

Question 1

- Figure Q1 shows a polysilicon wire segment, not drawn to scale. If it has a (a) sheet resistance of $R_s = R_{sM} \Omega/\Box$ and a relative capacitance 0.3 $\Box C_g$, compute the following:
 - resistance of the wire, in terms of R_{sM}. (4 marks) (i)
 - (ii) capacitance due to the wire, in terms of $\Box C_q$. (4 marks)
 - time taken to travel through this segment of the wire, in terms of τ , (iii) where $\tau = R_{sn}^* \Box C_g$. (4 marks)

Justify the following design rules: (b)

(ii)

- 2λ poly to poly spacing. (i)
 - (2 marks) 2λ overhanging of polysilicon at transistor gate. (2 marks)
- (C) Latch-up is an inadvertent structure found in CMOS structure.
 - Draw the latch-up equivalent circuit and explain what is latch-up. (i)

(5 marks)

- (ii) Give two possible consequences when a latch-up occurs. (2 marks)
- (iii) Suggest one method to minimize the occurrence of latch-up. (2 marks)

Question 2

For the CMOS layout shown in Figure Q2,

(a)	draw the corresponding colour-coded stick diagram.	(10 marks)
(b)	draw the corresponding transistor level schematic and state the output equation at Z of the circuit.	(10 marks)
(c)	briefly explain why diffusion is not allowed to cross the substrate-w boundary.	vell (3 marks)
(d)	name the diffusion used to form the well-tie and substrate-tie.	(2 marks)

Figure Q2

END OF SECTION A

SECTION B - ANSWER ANY 2 QUESTIONS (50 Marks)

Question 3

- (a) For the CMOS complex gate shown in Figure Q3, state the boolean equation at point *G*. (5 marks)
- (b) Using the transistor sizes given in Table Q3, calculate the delay time from **D** to **G** for A = B = F = 1, C = D = 0 for a load of $3 \square C_g$.

Give the answer in terms of τ where $\tau = R_{sn} \circ C_g$ and $R_{sp} \approx 2.5 R_{sn}$. (12)	marks)
---	--------

Gate	Transistor	Length (L)	Width (W)
Cata1	PMOS	2λ	16λ
Galer	NMOS	2λ	2λ
Coto 2	PMOS	2λ	8λ
Gale 2	NMOS	2λ	4λ

Table Q3

- (c) CMOS devices are known to be ratioless device, yet ratio is applied to the sizing of the various transistors as shown in Table Q3.
 - (i) Explain the purposes of having different sized PMOS and NMOS as shown. (2 marks)
 - (ii) Using relevant equations, explain how the size affects the path capacitance? (2 marks)
 - (iii) State 2 trade-offs when using larger transistors compared to smaller ones. (4 marks)

Question 4

- (a) For each of the extrinsic semiconductors (n-type and p-type):
 (i) name 2 suitable dopants
 (4 marks)
 - (ii) state the majority carriers found in the semiconductor. (2 marks)
- (b) Draw the layout of an NMOS transistor of Length = 2λ and width = 4λ . Indicate the length and width accordingly. (4 marks)
- (c) Explain how channel length and width of a transistor affects its resistance. Substantiate your answer with relevant equation. (3 marks)
- (d) Explain why dynamic MOS circuits operate faster than static MOS circuits.

(4 marks)

- (e) Figure Q4 shows an n-channel P-E logic. Explain its operation in terms of:
 - (i) Precharge Phase

(4 marks) (4 marks)

(ii) Evaluation Phase

Figure Q4

Question 5

(i)

- IC design flow can be divided into 2 major phases namely frontend and (a) backend.
 - (i) Name 2 languages commonly used in the frontend for digital circuit (2 marks) design.
 - Name 4 key processes in the backend phase. (4 marks) (ii)
- Explain briefly the purpose of the following in IC design: (b)
 - Test benches (2 marks) (2 marks)

(2 marks)

(6 marks)

- (ii) Functional simulation
- (iii) Logic synthesis
- (C) For the codes given in Figure Q5,
 - draw the block diagram and label the input and output pins. (4 marks) (i)
 - (ii) explain the functionality of the codes.
 - the module represents a combinational or sequential circuit? Justify (iii) your answer. (3 marks)

module exam (clk, clear, load, data, up down, oData); input clk, clear, load, up_down; input [7:0] data; output [7:0] oData; reg [7:0] cnt; assign oData = cnt; always @ (posedge clk) begin if (!clear) cnt = 8'h00;else if (load) cnt = data;else if (up_down) cnt = cnt + 1;else cnt = cnt - 1;end endmodule

Figure Q5

END OF SECTION B

Mask Layout Encoding Table

LAYERS	MASK LAYOUT ENCODING	
EATENS	MASK EAFOOT ENCODING	OF DATEN
n-diffusion (n* active)	MONOCHHOME	ND
Polysilicon		NP
Metal 1		NM
Contact cut		NC
Overglass	[]	NG
Implant		NI
Buried contact		NB
p-diffusion (p* active)	• P* mask	CAA or CPA
p+ mask		CPP
Metal 2		CMS
VIA	⊞	CVA
NWELL		CPW
VDD or VSS CONTACT	Vod Vss	сс

FEATURE	FEATURE (MASK) (MONOCHROME)
n-type enhancement transistor	(L:W = 1:1) S D G
n-type depletion transistor	(L:W = 1:1)
p-type enhancement transistor	p+mask G

Stick Diagram Encoding Table

Layer	Colour	Stick Encoding
n-diffusion	Yellow outline, Brown within	
p-diffusion	Dark Brown outline, Brown within	
Polysilicon	Green	
Metal 1	Blue	
Metal 2	Red	
Implant	Yellow dotted line	
Contact - Connect Poly to Metal 1 - Connect Diffusion to Metal 1	Black Solid circle	•
Via - Connect 2 metals	Black	\otimes
*N-well / P-well boundary	Brown dotted line	
*Well tie / Substrate tie	Black Cross	V.dd / V.ss

* only applicable to CMOS process