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Semi-Custom ASIC Design

Complex System-on-Chip (SoC) designs are fast becoming commonplace in today’s
applications. Hardware designers must overcome many complex and challenging
issues regarding cost, time-to-market (TTM), performance, power, capacity, quality
and IP integration. Due to the complexity and performance inherent in most SoC
applications, designers, historically, were limited to cell-based Application Specific
Integrated Circuit (ASIC) technology.

Cell-based ASIC technology offers the performance, power and capacity needed for
modern SoC applications. However, the technical advancements in shrinking
geometries have driven reticle cost through the roof. This exponential increase in
reticle cost translates to excessive Non-Recurring Engineering (NRE) cost, making
cell-based ASIC platforms too expensive for all but the highest volume applications
(quarter million plus units per year).

Field Programmable Gate Array (FPGA) technologies, with greater capacity,
performance and embedded IP, offer SoC designers another viable hardware
platform. The programmability of the FPGA allows fast time-to-market, which is
extremely critical to the success of a new product. However, the staggering per-unit
cost of high-end FPGAs is prohibitive for all but the lowest volume applications (few
thousand units per year).

The two extremes of cell-based NRE and FPGA per-unit cost have left a significant
void in the market. This void has lead to a market demand for a cost-effect solution
suitable for applications ranging from 5k to 1M units per year. In the past year that
market demand has led to the emergence of a new, innovative, product called the
Structured ASIC. Structured ASIC technology overcomes the two extremes by
offering SoC designers a solution with the capacity and performance required for
modern SoC applications but without the exorbitant NRE of the cell-based ASIC and
exorbitant per-unit cost of FGPA technology.

Structured ASICs are a new breed of custom device that approach the performance
of today's Standard Cell ASIC while dramatically simplifying the design complexity.
Structured ASICs offer designers a set of devices with specific, customizable metal
layers along with predefined metal layers, which can contain the underlying pattern
of logic cells, memory, and 1/O. By virtue of the predefined structures, the ASIC
vendor can design any time-consuming task — such as test, signal integrity and IR
drop — into the architecture.

Full custom ASIC chip is the most costly, and like standard cell ASICs, use a custom-
designed mask for every layer in the chip. Unlike standard cells, designers of a full
custom device have total control over the size of every transistor forming every logic
gate, so they can "fine tune" each gate for optimum performance. Thus, a full
custom ASIC performs electronic operations as fast as it is possible to do so,
providing that the circuit design is efficiently architected.

Microelectronics [EG3010] Page 2 of 31 Effective Date : 20 Oct 2014



Today, full custom ASICs represent a small percentage of the ASIC market because
gate arrays, structured ASICs and standard cells turn circuit designs into working
chips much faster and at much less cost. Such chips have greatly improved in speed
over the years and provide the necessary performance for many applications. The
speed advantage of a full custom ASIC is not as relevant as it was in the past. It is
used primarily for devices such as microprocessors that must run as fast as possible
and will be produced in huge quantities.

Figure 6-1 shows the design flow of a typical semi-custom design approach.
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Figure 6-1 Design Flow for Semi-Custom Design Approach
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6.1

Standard Cell Techniques

This technique relies on the existence of previously designed and fully characterized
standard circuits and layout data held in a CAD database library. The cell libraries
may consist of standard logic gates, I/O pads, macros, etc of a particular process
technology. The cells are typically optimised full custom layouts, which minimize
delays and area.
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Figure 6-2 Database of a NAND2 standard cell

In the layout, only the access pins and power pins are visible for interconnects. The
entire mask layout for the devices within gate is also available in the library but
cannot be modified.

There are various sizes of the same device in the library. If a larger driver is required
for the NAND2 gate, then another similar NAND2 gate with larger transistor size is
selected from the library to meet the requirements.

The entire standard cell layouts have the same height. This enables the cells to be

placed alongside each other in uniform rows across the chip. The width of the cells is
variable to cater for different driver sizes and different types of gates.

| Veo =l Vee

Figure 6-3 Sample layouts of same cell height
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For standard cell technique, a full set of mask is required for fabrication purposes
since the chip layout, number of I/Os and chip size is dependent on the specific
design, which is fully controlled by the IC designer.

6.1.1 Cell Based Design Flow

Figure 6-4 shows an ASIC design flow, typically divided into two major phases
namely, the front-end design and back-end design phase.
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Figure 6-4 ASIC Design Flow

6.1.1.1 Frontend Design

Frontend design is the first phase where the logic for the chip is built using the
Hardware Description Language (HDL). This logic realization is done using various
steps in which the design is coded, verified and mapped to the actual gates using a
process called synthesis.
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Figure 6-5 Front End Phase L
(i) Coding

The design is expressed in the form of behavioural description codes using
hardware description languages (HDL) such as Verilog and VHDL.

Figure 6-6 shows a simple example in Verilog codes. Refer to Page 23 for
more examples.

// This line is a comment

module sample (clk, a, b, ¢, c_reg);
input clk, a, b;

output c;

output reg c_reg;

assignc=a || b; // Logical OR of the signals a and b

// output of the previous step is sent through a flop that
// is clocked by “clk”

always @(posedge clk)
C_reg<=c;

endmodule

Figure 6-6 A sample block in Verilog HDL

The above code describes a design that has :
- 3inputs “clk”, “a” and “b” and

o _n

- 2 outputs “c” and “c_reg”.

- output “c” is the logical OR of the “a” and “b”.

- output “c_reg” is a registered version of “c”. i.e. output “c” is given to the
input of a flop that is clocked by “clk” and the “Q” output of the flop is
connected to “c_reg”

Microelectronics [EG3010] Page 6 of 31 Effective Date : 20 Oct 2014



(i)

(i)

Simulation

Once the coding is completed it has to be checked if the design is doing its
expected function. This is called the functional verification.

Test bench using Verilog or VHDL can be developed to apply all possible
stimuli at the input and check the output that is generated by the code.

For a huge chip, this may be a very involved job. Once the designer is sure
that the code functions as expected, he will take the code through the
synthesis process to convert it into gates.

Synthesis

During this phase, the design is target into equivalent gates and flops. The
output from the synthesis phase is often referred as the netlist, which
represents the connectivity of the cells used to realise the logic.

The tool will read the verified code and map the logic functions into the
relevant gates/flops based on target libraries provided by the silicon vendor,
which depends on the type of technology the designer intended to use for
the chip.

A sythesized netlist from a synthesis tool will look like the one shown below.

module sample ( clk, a, b, ¢, c_reg);
input clk, a, b;
output c, c_reg;

FD1 c_reg_reg (.Q(c_reg), .D(c), .CP(clk) );
OR2 U9 ( .Z(c), .A(b), .B(a) );

endmodule

Figure 6-7 A synthesized netlist in Verilog HDL

The above representation is also in Verilog except that the file is having hard
cells in them instead of the behavioural descriptions. The cell “OR2”
represents a two-input OR gate from the technology library and the cell
“FD1” represents a D-flip-flop. This flop’s D-input is same as the output “c”
and output-Q of the flop is connected to “c_reg”. The flop is clocked by the
signal “clk”. A pictorial representation of the logic is shown in Figure 6-8.
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Figure 6-8 Pictorial representation of Figure 6-6

Since this netlist also represents the design, one can run the functional
verification tests against this netlist. A Static Timing Analysis (STA) on the
netlist which reveals any potential timing problems like a setup or hold
violation in the design is then run. If there are some timing errors, those have
to be fixed.

6.1.1.2 Backend Design

The second major phase in the ASIC design is commonly known as the backend
where the cells in the netlist are placed on the die and then routed. The netlist,
which has no violations is read into the placement tool and placed within the die
area according to the guidelines given to the tool.

module CONTROL ..
input A, B, C;
output reg X;

and2 U1 (10(B), 11(C), .Z(T1);
or2 U2 (I0(B), 1(C), Z(T2);
mux2 U3 (S(A), 11(T1), 12(T2), Z(X);

Gate-level Netlist

create_clock —period 10 ......
set_input_delay —-max 1.2 ...
set_output_delay -max 2.5 ...
set_load 0.25 ...

Standard Cell Library Timing Constraints

Figure 6-9 Place and Route ‘
SYnopsys
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(i) Placement

Placement of cells depends on the connectivity and also on the distance
between the cells so as not to cause any timing violation. Cells that are
placed far apart will have a lengthy wire to connect them, and this will cause
additional delay. Another reason for more delay is the fanout. When the
fanout of a cell increases, this increases the capacitance load on the driving

cell. This will also cause output signal to propagate slowly from one point to
another.

The placement tool will be given a set of constraints that will indicate the
timing requirements of the design. Hence the tool will try to place the cells in
such a way that there are no timing deteriorations. In addition to the cells,
the tool will place the 10 pads also along the periphery of the die so that the
pins can be connected to the pads using metal bonding at a later stage.
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Figure 6-10 Concept of Placement
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(ii) Routing

Once the cells and 10 pads are placed satisfactorily, the design is given to the
routing tool for routing. This tool will connect the cells according to the
information in the netlist.

» Connecting between metal layers
requires one or more “vias”

» Metal Layers have preferred routing
directions
— Metal 1 (Blue) Horizontal
— Metal 2 (Yellow) Vertical
— Metal 3 (Red) Horizontal

Synopsys

Figure 6-11 Concept of Routing

When the routing is completed the designer can extract the actual delay
contributed by the cells and the wires. These timing numbers are to be fed to
the STA tool once again to determine the conditions of violations based on
the final routing. If there are any violations, they need to be fixed by
performing some netlist changes or by improving the routing/placement or
by doing both. This will take few iterations to converge on the timing.

When the backend phase is completed with no violations, the design is
converted into a database that will be used to build the mask for the
semiconductor processing. These data will be given to the processing units
for manufacturing the chip.
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6.2 Gate Array Design Techniques

A gate array or uncommitted logic array (ULA) is an approach to the design and
manufacture of ASICs. A gate array circuit is a prefabricated silicon chip circuit with
no particular function in which transistors, standard NAND or NOR logic gates, and
other active devices are placed at regular predefined positions and manufactured on
a wafer, usually called a master slice.

Circuit with a specified function is accomplished by adding a final surface layer or
layers of metal interconnects to the chips on the master slice late in the
manufacturing process, joining these elements to allow the function of the chip to be
customised as desired. This layer is analogous to the copper layer(s) of a PCB.

Gate array master slices are usually prefabricated and stockpiled in large quantities
regardless of customer orders. The design and fabrication according to the individual
customer specifications may be finished in a shorter time compared with standard
cell or full-custom design.

The gate array approach reduces the mask costs since fewer custom masks need to
be produced. In addition manufacturing test tooling lead time and costs are reduced
since the same test fixtures may be used for all gate array products manufactured on
the same die size. Gate arrays were the predecessor of the more advanced
structured ASIC.

An application circuit must be built on a gate array that has enough gates, wiring and
I/O pins. Since requirements vary, gate arrays usually come in families, with larger
members having more of all resources, but correspondingly more expensive.

The main drawbacks of gate arrays are their somewhat lower density and
performance compared with other approaches to ASIC design. However this style is
often a viable approach for low production volumes.
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Figure 6-12 Single Cell Circuit and its Corresponding Layout
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Gate Arrays are classified by the followings:

- the specifications of the cell on the chip (# of devices)

- the number of such cells per chip

- the number of I/Os per chip

- the fabrication process technology used

- the number of interconnection layers available for customization

Each die consists of rows of butting identical cells separated by wiring channels. 1/0
pads are around the perimeter of this active area.

6.2.1 Gate Array Design Flow

The Front End design process is similar to the standard cell technique. After all the
schematics for the design are determined and simulated, they are converted to gate
array macros.  This process converts the schematic blocks to transistor
interconnections that serve the same logic function.

The Back End design process involves routing connections of the cells to match the

gate array macros. The placement of cells and routing channels are fixed, thus
routing may not take the optimum path, resulting in slower performance.
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Figure 6-13 Floor plan of Gate Array IC
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6.3 Field Programmable Devices

A field-programmable gate array (FPGA) is an integrated circuit designed to be
configured by the customer or designer after manufacturing—hence "field-
programmable". The FPGA configuration is generally specified using a hardware
description language (HDL), similar to that used for an ASIC.

FPGAs can be used to implement any logical function that an ASIC could perform.
The ability to update the functionality after shipping, and the low non-recurring
engineering costs relative to an ASIC design offers advantages for many applications.

FPGAs contain programmable logic components called "logic blocks", and a hierarchy
of reconfigurable interconnects that allow the blocks to be "wired together"—
somewhat like a one-chip programmable breadboard. Logic blocks can be configured
to perform complex combinational functions, or merely simple logic gates like AND
and XOR. In most FPGAs, the logic blocks also include memory elements, which may
be simple flip-flops or more complete blocks of memory.

The most compelling advantages of FPGAs are low startup cost, low financial risk,
and, because the end user programs the device, quick manufacturing turnaround
and easy design changes.

Figure 6-14 shows the internal structure of an FPGA. There are three key parts of a
FPGA structure, namely logic blocks, interconnect, and I/O blocks. The 1I/O blocks
form a ring around the outer edge of the part. Each of these provide individually
selectable input, output, or bi-directional access to one of the general purpose 1/0
pins on the exterior of the FPGA package. Inside the ring of 1/O blocks lies a

rectangular array of logic blocks. Programmable interconnect wirings connect logic
blocks to logic blocks and 1/0 blocks to logic blocks.
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Figure 6-14 Internal structure of an FPGA
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6.3.1 FPGA Design Flow

The process of creating digital logic is through a description of the hardware's
structure and behaviour written in a high-level hardware description language
(usually VHDL or Verilog. The code is then compiled and downloaded prior to
execution. Schematic capture is also an option for design entry, but it has become
less popular as designs have become more complex and the language-based tools
have improved.

6.3.1.1 Design Entry (Coding)

During design entry, hardware designers must think-and program-in parallel. All of
the input signals are processed in parallel, as they travel through a set of execution
engines — each one a series of macrocells and interconnections — toward their
destination output signals. Therefore, the statements of a hardware description
language create structures, all of which are “executed” at the very same time.

Design Entry  *
v
Simslation -
2
v
Design -
Constraints Synthesis

Place and Route

Figure 6-15 FPGA Design Flow

6.3.1.2 Simulation (Verification)

Typically, the design entry step is followed or interspersed with periods of functional
simulation. A simulator is used to execute the design and confirm that correct
outputs are produced for a given set of test inputs. Although problems with the size
or timing of the hardware may still crop up later, the logic functionality is ensured
before the next stage of development.
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6.3.1.3 Synthesis

During this step, a representation of the hardware based on the functionally correct
design will be generated. The result is a netlist which is device independent. It is
usually stored in a standard format called the Electronic Design Interchange Format
(EDIF).

6.3.1.4 Place & Route

This step involves mapping the logical structures described in the netlist onto actual
macrocells, interconnections, and input and output pins. The result of the place &
route process is a bitstream, which is the binary data that must be loaded into the
FPGA or CPLD to cause that chip to execute a particular hardware design.

6.3.1.5 Device Programming

6.3.2

Once the bitstream for a particular FPGA or CPLD has been created, it can be
downloaded it to the device. The details of this process are dependent upon the
chip’s underlying process technology.

Programming Technologies

Programmable logic devices are like non-volatile memories in that there are multiple
underlying technologies. In fact, exactly the same set of names is used: PROM (for
one-time programmable), EPROM, EEPROM, and Flash.

6.3.2.1 Non-Volatile Technologies

PROM and EPROM-based logic devices can only be programmed with the help of a
separate piece of lab equipment called a device programmer.

One common approach used is the fusible link method. Figure 6-16(a) shows the
construction of a fusible link. It is normally open until programmed to close. To
program it, the programmer applies a high voltage to the link, this causes the
dielectric to breakdown, thus forming a connection as shown in Figure 6-16(b).

(a)

Polysilicon

dielectric

(b)

Polysilicon

dielectric after \__.____‘.__.__J n* Diffusion

breakdown

Figure 6-16 Fusible Link
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EEPROM or Flash technology devices allow re-programming. Additional circuitry
that’s required to perform device (re)programming is provided within the FPGA or
CPLD silicon as well. This makes it possible to erase and reprogram the device
internals via a JTAG interface or from an on-board embedded processor. (Note,
however, that because this additional circuitry takes up space and increases overall
chip costs, a few of the programmable logic devices based on EEPROM or Flash still
require insertion into a device programmer.

Figure 6-17 shows a floating gate MOS transistor. The floating gate (Gate 1) is
unconnected and surrounded by extremely high impedance oxide. In the original
state, the floating gate has no charge on it and has no effect on the circuit operation.
Hence, it effectively functions like a normal transistor.

To program it, the programmer applies a high voltage to the non-floating gate (Gate
2) at each location where a logical link is not wanted. This causes a temporary
breakdown in the insulating material and allows a negative charge to accumulate on
the floating gate. The negative charge prevents the transistor from turning “on”
when a HIGH signal is applied to the non-floating gate; the transistor is effectively
disconnected from the circuit.

The charges at the floating gate can be “erased” by exposing the transistor to UV
light.

Gate 2

Source

Figure 6-17 UV Erasable Floating Gate

6.3.2.2 Volatile Technologies

In addition to non-volatile technologies, there are also programmable logic devices
based on SRAM technology. In such cases, the contents of the device are volatile.
This has both advantages and disadvantages.

One advantage is that the content of the logic device can be manipulated on-the-fly
so that the hardware design could be upgraded as easily as software.

The obvious disadvantage is that the internal logic must be reloaded after every
system or chip reset. That means you'll need an additional memory chip of some sort
in which to hold the bitstream.
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6.3.3 Applications

Many times a CPLD or FPGA will be used in a prototype system. A small device may
be present to allow the designers to change a board's glue logic more easily during
product development and testing. A large device may be included to allow
prototyping of a system-on-a-chip design that will eventually find its way into an
ASIC. Either way, the basic idea is the same: allow the hardware to be flexible during
product development. When the product is ready to ship in large quantities, the
programmable device will be replaced with a less expensive, though functionally
equivalent, hard-wired alternative.
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Figure 6-18 Altera DE 2 Board
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6.4

Structured ASIC

Structured ASIC is a type of application specific IC (ASIC) chip. Its performance
approaches that of Standard Cell ASIC while dramatically simplifying the design
complexity. Structured ASICs offer designers a set of devices with specific,
customizable metal layers along with predefined metal layers, which can contain the
underlying pattern of logic cells, memory, and 1/O. By virtue of the predefined
structures, the ASIC vendor can design any time-consuming task — such as test,
signal integrity and IR drop — into the architecture.

Unlike a standard cell, which requires all the masking stages in the transistors and
metallization layers to be fabricated, structured ASICs require only one or two masks
to tie the blocks together. In some design, only the vias need to be made conductive
in order to complete the chip.

In addition to functional IP, Structured ASIC products also contain large amounts of
high-performance, initializable macros. Figure 6-19, shown below, illustrates the
architecture of a Structured ASIC.
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Figure 6-19 Structured ASIC Block Diagram

The manufacturing cycle for a Structured ASIC is considerable shorter than that
required for a cell-based ASIC as fewer layers need to be processed. This significantly
lowers the NRE cost.

With the capacity and performance optimization inherent in Structured ASIC
technology, SoC applications in the millions of gates can operate at speeds up to 200
MHz, making Structured ASIC technology robust enough to meet the demand of
modern SoC applications. That, coupled, with the cost savings afforded by the hybrid
nature of the technology, easily demonstrate how Structured ASIC technology can fill
the void left by cell-based ASIC and FPGA technologies.
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Figure 6-20, illustrates the metal utilization of a structured ASIC. The base
architecture, up through M2, contains the ‘sea-of-macros’, and a portion of the
embedded IP, both comprised of high-performance Deep Sub-micron (DSM)
transistors. Some of the embedded IP will utilize layers in the base as well as some or
all of the programmable layers, depending on the complexity and performance
requirements of the IP. The programmable metal layers, M3 to M5, are a more
mature technology and are used to route the custom applications. Soft,
synthesizable, IP will also be routed in these programmable metal layers.

Figure 6-20 Structured ASIC Metal Utilization
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6.5 Technical Comparisons

6.5.1 Standard Cell and Full Custom Design

Standard Cell

Full Custom Design

Cells are designed to interface horizontally
with any other cell in the library

Design to interface only with transistors
within its own block

Cell height is fixed/or in multiples for macro
cells

Cell height is variable and customizable
and independent of all other cells

Transistor sizes for the gates are fixed and is
selected from library data

All transistor sizes are customized for
maximum performance

Floor planning, placement and routing are
done with aid of EDA software

Placement and routing of devices are
usually done manually

Power lines in the cell rows are calculated for
average dissipation

All power lines are designed to sustains a
pre-defined current loading

Emphasis on the ability to use EDA tools
efficiently

Considerable design experience required

Short design cycle

Long design cycle

For complex design up the several hundred
thousand gates

For small design (up to several hundred
devices) where emphasis is on
performance (e.g. analogue functions)

6.5.2 Standard Cell and Gate Array Approach

Standard Cell

Gate Array

Designer controls placement and routing of
cells

Placement is fixed and routing iterations
are greatly reduced. Routing may not take
optimum path; results in slower
performance

The number of gates required depends on
the design

Fixed number of cells/gates per chip
resulting in unused cells

ROMs and other custom blocks can be
included (block layout height fit into the
multiple the standard cell’s height)

Difficult to include macro blocks such as
ROMs, PLAs in design

The number of I/Os pads depends on the
design

The number of I/O pads are fixed and may
results in unused pads

The chip size is variable and depends on the
designer’s skill to compact the design
through placement and routing control

The chip size is fixed (depends on the
number of cells per chips and its I/O pads).
Routing channels are fixed

Full set of mask is required for fabrication of
the IC

Only the interconnects mask layers (e.g.
metall, via, metal2, etc) are required for
fabrications

More costly fabrication cost and need longer
lead time

Less lead time since only interconnections
are processed

Testing cost is higher since test fixtures are
customized for the specified design

Testing cost is lower since test fixtures are
used for multiple designs
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6.5.3 Comparison of Various Design Approaches

Off -the-shelf Devices Vendor Customized
SSI and MSI PLDs PGA Gate Array Standard Cell
Capacity (# of 10 to few 100s to few 1000s to ten | 1000s to ten 10,000s to
gates) hundreds thousands thousands thousands hundred
thousands
Speed Medium To Slow to Slow to Slow to Fast Medium to
Fast Medium Medium Fast
Functionality Yes Yes Yes Yes
Defined by user
Time to Seconds Seconds Depends upon many factors, up
customized to months
User Yes Yes No No
programmable
6.5.4  Cell-Based vs FPGA vs Structured ASIC
Cell-Based FPGA Structured ASIC

Production Volume

% of a Million
units

Few Thousand units

5K to 1M units

Architecture

Sea-of-Gates

Sea-of-Macros
programmability

with

Sea-of-Macros

Performance Good Good Good
Cost (NRE) High Low Moderate
Time-to-Market Fast Fastest Faster
Design Cycle Long Short Moderate
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Review Questions

Question 1

Briefly describe the semi-custom ASIC design techniques :

(a)
(b)

Standard Cell Techniques.
Gate Array Techniques

Solution to Q1

(a)

— —

This technique relies on the existence of previously designed and fully characterized
standard circuits and layout data held in a CAD database library. The cell libraries
consists standard logic gates, |I/O pads, etc of a particular process technology, which are
provided by the fabrication vendor.

!

vDD vDD b

m h——

Nandx2 Out — Out

%
ool

Nandx2

In2

ii
vss

Logi¢ Symbol Schematic = gate repressntation Layout = standard gate representatior

Database of a NAND2 standard cell

In the layout, only the access pins and power pins are visible for interconnects. The
entire mask layout for the devices within gate is also available in the library but cannot
be modified.

There are various sizes of the same device in the library. If a larger driver is required for
the NAND?2 gate, then another similar NAND2 gate with larger transistor size is selected
from the library to meet the requirements.

The entire standard cells layout has the same height. This enables the cells to be placed
alongside each other in uniform rows across the chip. The width of the cells is variable
to cater for different driver sizes and different types of gates.
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(b) Gate Array design techniques rely on the availability of wafers that have been fully
processed up to, but not including the final chip interconnections. These items are kept
as stock items by the vendors and each die on the wafer contains an array of identical

general-purpose cells.

— T

r CELL CIRCWUIT

(.

B POSSIBLE
CONTACTS

2

ARANAVURANRRNAN

|

E88B88BH

_'ﬁ__
o Svm BUS
m - .
m
m
C
i
0
m - -
1]
i —
L@__ _3 Vg BUS

Single Cell Circuit and its Corresponding Layout

Gate Arrays are classified by the followings:
- the specifications of the cell on the chip (# of devices)
- the number of such cells per chip

- the number of I/Os per chip

- the fabrication process technology used
- the number of interconnection layers available for customization

Each die consists of rows of butting identical cells separated by wiring channels.
pads are around the perimeter of this active area.

1/O
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Question 2

Implement a 2 inputs “NOR” logic gate on the Site schematic and Mask layout as shown in
Figure 6-21.

SITE SCHEMATIC

POLY CONTACT

&

Eﬂ' 1 1 —-—-—/-—:: :7 Voo BUS
p-DEVICES @ Z [0
SUBSTRATE CONTACTS
n-DEVICES %2
m Y m
cimt ¥ ———4
] — j____i___ — [ vy BUS
Figure 6-21
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Solution 2

Implementation of a 2 inputs “NOR” gate using a Gate Array Cell.

Vad
| V,
ILI_‘.—LI_I——q out
U

2
VSS

A B

1
POLY CONTACT

Vop BUS

p-DEVICES

SUBSTRATE CONTACTS
n-DEVICES

V¢ BUS
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Question 3

List the advantages Standard Cells technique has over Full Custom Design approach.

Solution to Q3

Standard Cell

Full Custom Design

Emphasis on the ability to use EDA tools
efficiently

Considerable design experience required

Short design cycle

Long design cycle

For complex design up the several
hundred thousand gates

For small design (up to several hundred
devices) where emphasis is on performance
(e.g. analogue functions)

Question 4

List the advantages Standard Cells technique has over the Gate Array approach.

Solution to Q4

Standard Cell

Gate Array

The number of gates required depends
on the design

Fixed number of cells/gates per chip resulting
in unused cells

The number of 1/Os pads depends on the
design

The number of I/O pads are fixed and may
results in unused pads

The chip size is variable and depends on
the designer’s skill to compact the design
through placement and routing control

The chip size is fixed (depends on the number
of cells per chips and its I/O pads). Routing
channels are fixed

Full set of mask is
fabrication of the IC

required for

Only the interconnects mask layers (e.g.
metall, via, metal2, etc) are required for
fabrications

More costly fabrication cost and need
longer lead time

Less lead time since only interconnections
are processed

Testing cost is higher since test fixtures
are customized for the specified design

Testing cost is lower since test fixtures are
used for multiple designs
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Chapter 6 — HDL (Verilog)

module counter (clk, reset, count);

b d Quartus Il - [DIPLOMA/Year2/EG 2163/g10_25/digitaltrafficlight/trafficlight - trafficlight - [counter.bdf*] . t clk t
File Edit iew Project Processing Tools Window Input clk, reset,

output reg [3:0] count;

]

| always @(posedge clk or negedge reset)
SRR EEEETEEeT — — | begin
ol . if(reset==0)
count <=0;
else
count <=count + 1;

end
endmodule

0 0 B m e S

counter

—p clk count[3:0] #V

| E ign Vision - TopLevel.l (counter) - [Schematic.l counte|
—le Edit View Select Highlight List Hierarchy Design Attributes Schematic Timing Test »Jﬂ

|rewleca -cnl - BnEEEEDIGQ

reset

|
&
.
# |
Al
=
- o
T
=]
O
~
R

counter

count[3:0]
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Schematic of a 7-Segment Decoder (active low)

7segment._bdf l

—il s
e B
b s

A AR T T oW l_E’_:

o L=

O

!

*]

!

:

200k e B @ LN

Microelectronics [EG3010] Page 28 of 31 Effective Date : 20 Oct 2014



Verilog Codes - sevenSeg

module sevenSeg (count, seg7);

input [3:0] count;

output reg [6

:0] seg7;

always @(count)

begin

case (count)

4’'b0000:
4'b0001:
4'b0010:
4’b0011:
4’b0100:
4’b0101:
4'b0110:
4'b0111:
4’'b1000:
4'b1001:
4'b1010:
4’b1011:
4’b1100:
4’b1101:
4’b1110:
4'b1111:
endcase
end

endmodule

seg7 = 7’b0000001; //abcdefg
seg7 =7'b1001111;
seg7 = 7'b0010010;
seg7 = 7’b0000110;
seg7 = 7'b1001100;
seg7 = 7'b0100100;
seg7 = 7’b0100000;
seg7 =7'b0001111;
seg7 = 7’b0000000;
seg7 = 7'b0001100;
seg7 = 7’b0001000;
seg7 = 7’b1100000;
seg7 = 7'b0110001;
seg7 = 7'b1000010;
seg7 = 7'b0110000;
seg7 =7'b0111000;

Logic synthesis is the process of converting design
codes such as Verilog or VHDL into logic gates for
implementation.

Logic Synthesized - sevenSeg

Block Diagram - sevenSeg

sevenSeg

count[3:0]

seg7[6:0]

SERAe M)

S

S
T
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Simulation waveform — 9 to 0 Counter

File Edit Wiew Project Tools

Windom

tdaster Time Bar: 955 ns 1| | Pointer; | 170.32 nz Interval: | 160.77 nz Start; End:
m Value 0 ps 4IZI.IIZI ns EIZI.IIZI ns 120'.0 ns 1EIZI.IIZI ns 2IZIIZI.IIZI ns 24D.IIZI ns EED.IIZI ns
A Name e | 955 ns
W% |
@\wn CLK atl o T 1T 111 1T rr 1 r 1 ri1rr
@1 E count AUKTOTH. 91 % 181 3 171 % T8 AL [31 ¥ T21 3 M1 % 01 % 91 % [81 % [ X% [6]
= ? Q3 Al T T 1 T 1
Tam || 3 0z Al | | |
f? Lo o Al | |
% (o5 ao | acl | | 1 | ] 1 | N
e
‘timescale 1ps/1ps Test Bench
module counter_tb;
reg clk_tb, reset_tb;
wire [3:0] count_tb; Test benches provide all possible inputs
to the design circuits during functional
counter ul (.clk(clk_tb), .reset(reset_tb), .count(count_tb)); . . 8 &
simulation.
initial
begin . . .
#0 clk tb =0: Functional simulation invokes the
resgt tb =' 1. simulator to verify that the design
#10 rese_t tb 2'0_ performs according to specification for
#50 reset_tb - 1'_ all nossible inpbut conditions.
#800 Sstop;
end
always
#5 clk_tb = ~clk_tb;
endmodule
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b Quartus Il - /[DIPLOMA/Year2/EG 216 3/g10_25/digitaltrafficlight/trafficlight - trafficlight - [trafficlight.bdf]
Fil= Edit “iew Project Processing Tools  Window

Top-Level Interconnections

CeAer 7T R
P e e I

ok_int g3 int [T PIUT 5 03 SEREEEEEEE R
it | AIERIT 4 PRRTT] ©occiiiiioi

al_int | e S | PIRIS] -0 iiiiii

q_int ! SR " =" PIM UG - - ool

N S, (O I I e ey, S R L 811 S DI

I I P I e e e e I I I L SLAL N S I

U inat] R O B e e e e e I I I

oo lofo|] s Teeament '
R R RS R R N Bl He o N EEEEE
..................................................... o it (PN _JZ] -
i g PRI T -
..................................................... : a_init PIN_F1 | -
N PIN_] - .
SEESRAESS RS RAES DRSS R SR RS EE SRRSO BRI EINE
Bl T TN E2
Rl oo g PhHe | -
P D I S S ‘timescale 1ps/1ps Test Bench
module counter_tb;
counter reg clk_tb, reset_tb;
wire [3:0] count_tb;
clk_tb clk count[3:0] 4 wire [6:0] seg7_tb;
reset ’cbI reset count tb counter ul (.clk(clk_tb), .reset(reset_tb), .count(count_tb));
- sevenSeg u2 (.count(count_tb), .seg7(seg7_tb));
initial
begin
sevenSeg #0 clk_tb=0;
4 - seg7_tb reset_tb = 1;
> count[3:0] seg 7[6:0] ——~—» #10 reset_tb =0;
#50 reset_tb=1;
#800 Sstop;
end
always
#5 clk_tb = ~clk_tb;
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