<u>14s1</u>

Solution to Question 1

(i) resistance of wire =
$$23.25 R_{sM} \Omega$$

- (ii) capacitance of wire = relative area * relative capacitance * \Box Cg = 8.7 \Box Cg F
- (iii) Time taken = RC = 20.25 R_{SM} * 7.8 \Box Cg = 157.95 $\frac{R_{sn}}{R_{sn}}$ R_{SM} \Box Cg = 157.95 (R_{SM}/R_{sn}) τ

Solution to Question 2

(b)

Solution to Question 3

(a)
$$G = \overline{(A C + B D)}$$
. F

(b)
$$C_E = \mathbf{6} \Box \mathbf{C}_g$$

(i)
$$\frac{\text{Gate 1 : } A = B = 1, C = D = 0}{R = 0.625 R_{sn}}$$
$$T(\text{OFF}) = RC$$
$$= 0.625 R_{sn} \times 6 \square C_g$$
$$= 3.75 \tau$$

(ii) Gate 2 :
$$V_E = "H", F = 1$$

 $\mathsf{R} = \mathsf{R}_{\mathsf{sn}}$

Total delay = 6.75τ

Solution to Question 5

- (c) (ii) The circuit is an 8-bit up-down counter with clear and pre-load feature.
 - When clear is low (0), counter is reset and cnt (oData) will be set to 0.
 - When **clear** is high (1), counter can be initialized with the value from **data** or counting can proceed by setting load=0.
 - Up or down counting depends on the signal at **up_down**.
 - If up_down=1, cnt (oData) will increment on the positive edge of clk
 - If up_down=0, cnt (oData) will decrement on the positive edge of clk
 - (iii) The module is a sequential circuit as the events are clock triggered as seen in the always @(posedge clk) statement.

14S2

Solution to Question 1

(b)(ii) Transistor Level Schematic

X = A.B + C

Solution to Question 3

(a) (i) $F = \overline{\overline{(\overline{AB}, \overline{C})}} + \overline{D} = \overline{AB + C + \overline{D}}$

(ii) Function Implemented Using Standard Gates Concept

(b)(i)

 $tpHL = 2R_{sn}(1/1) * C_L$ $= 2R_{sn} * 1\Box C_g$ $= 2 \tau$

Time taken = tpLH = $(R_{pA} / / R_{pB}) * C_L$ = $\frac{1}{2}R_{sp}(1/1) * C_L$ = $\frac{1}{2}(2.5R_{sn}) * 1 \square C_g$ = 1.25τ

Solution to Question 4

(a)

(i) resistance of wire = 10 R_{spoly} Ω

(ii) capacitance of wire =15 $\Box C_g$ F

(iii) Time taken = $10 R_{spoly} * 15 \Box C_g$

$$= 150 \frac{R_{sn}}{R_{sn}} \operatorname{R_{spoly}} \Box \operatorname{C_g}$$

$$= 150 \frac{R_{spoly}}{R_{sn}} \quad \tau$$

solution to Question 5

- (c) (ii) The circuit is a 4-bit up-down counter with synchronous clear feature.
 - As **clr** is not in the sensitivity list, the counter will not reset instantaneously but have to wait for the positive edge of the clk to be present.
- (iii) When the positive edge of the clock occurs,
 - If **clr** is high (1), then counter will be initialized to zero.
 - If **clr** is low (0), the up_down signal will be assessed.
 - If up_down=1, tmp will increment by 1
 - If up_down=1, tmp will decrement by 1

The tmp value is then re-assigned to the output, q.

<u>15S1</u>

Solution to Question 1

resistance of wire = 14.75 R_{sM} Ω (i)

capacitance of wire = relative area * relative capacitance * \Box Cg (ii)

$$= 4.1 \square C_g F$$
(iii) Time taken = RC

$$= 14.75 R_{sM} * 4.1 \square C_g$$

$$= 60.475 \frac{R_{sn}}{R_{sn}} R_{sM} \square C_g$$

$$= 60.475 (R_{sM}/R_{sn}) \tau$$

Solution to Question 2 (e)

Solution to Question 3

(a)
$$G = \overline{(A C + B D)}$$
. F

(i)
$$\frac{Gate \ 1 : A = B = 1, C = D = 0}{R = 0.625 R_{sn}}$$
$$T(oFF) = RC$$
$$= 0.625 R_{sn} \times 6 \square C_{g}$$
$$= 3.75 \tau$$

= 6□C_g

$$T(ON) = R_{sn} \times 3\Box C_g$$
$$= 3 \tau$$

Total delay =6.75 τ

Solution to Question 5

(ii) The Rst signal is a synchronous signal. For reset to occur, the Rst has to be at logic 1 when the posedge of Clock occurs.

The purpose of this signal is to bring the circuit to a known state prior to the execution of the intended function.

(iii) The codes describe a 4-bit right-shift register (sequential circuit). When the Rst is at logic 1 and a posedge Clock occurs, the output (Q) is reset to 0; else the bits on the output will shift from MSB to LSB with the MSB taking the value of Data eventually.