

School of Engineering

Diploma in Electronics Computer & Communications Engineering (EGDF01)

EXPERIMENT NO	:	Lab 02 (Duration : 2 hours)
EXPERIMENT TITLE	:	To study NMOS Transistor as a Switch
OBJECTIVE	:	To study the characteristics of an NMOS transistor as a switch

- 1. Capture a schematic diagram
 - (a) With reference to Step 1(b) to 1(g), launch a new *schematic* window to capture the circuit (nswitch) of Figure Lab2-1.

Figure Lab2-1 : NMOS Switches

(b) Add NMOS transistor *Create* → *Instance*

6				
Add Ins	tance			
Library	gpdk090	Browse	Library	apdk090
Cell	nmos1v		Cell	nmos1v
View	symbol		View	symbol
Names				,
Array	Rows	1 Columns 1		
	🕰 Rotate 📄 🕼	Sideways 🕞 Upside Down		
Model Na	ume	gpdk090_nmos1v		
Multiplier		1	l an aith	100m M
Length		100n M	Length	
Total Widf	th	120n M	Einger Width	Wn M
Finger Wi	dth	Wh M	i iligei wiatti	
Fingers		1		
Threshold	I	120n M		
Apply Thr	reshold	<u> </u>		
Gate Con	nection	None		
Lise DEM	Bules	Minimum 🚽		

Figure Lab2-2 : Add NMOS Transistor

(c) *Click* on the schematic window to place component; press *ESC* to cancel command.

(d) Add pin

Create	e → Pin				
🗙 Add Pin					
Pin Names	vss			Pin Names	VSS
Direction	inputOutput	Bus Expansion	💩 off 🥥 on	Direction	
Usage	schematic 🔽	Placement	🧕 single 🧅 mult	iple	InputOutput
Attach Net Exp	iression: 🛛 🖲 No	🥥 Yes		Attach Net I	Expression No
Property Name					
Default Net Na	me				
Font Height	0.0625	Font Style	stick		
🕼 Rotate		🗧 Upside Down	Show Sensitivity	/ >>	
		(Hide) Canc	el Defaults H	Help	

Figure Lab2-3 : Add Pin

- (e) Add pin *input, nmos1, nmos2* -- direction *input* Add pin *01nmos, 02nmos* -- direction *output*
- (f) **Click** on the schematic window to place the pin; press **ESC** to cancel command.
- (g) Wire up the circuit as shown in Figure Lab2-1.
 Create → Wire (narrow)
- (g) Check and Save Design File → Check & Save

- 2. Create a symbol
 - (a) With reference to Step 2(b) to 2(c), create a symbol for the circuit captured in Step 1 (Figure Lab2-1). From the *schematic window*,

Create \rightarrow Cellview \rightarrow From Cellview

Figure Lab2-4 : Steps to create symbol

(b) Accept all default values in the pop-up windows

		Cellview From Cell	view			_ D X			
		Library Name	class			Browse			
		Cell Name	lab2						
		From View Name	schematic						
		To View Name	symbol)					
Y Symbol Genera	ation Options				_ ×				
Library Name		Cell Name		View Name					
class]	lab2		symbol]				
Pin Specificatio	ons				A divile ut e e				
Left Pins	input nmos1 nm	os2							
Right Pins	Olomos Olomos						[@instai	nceName]	J.
Top Pins						[@a.a.th]amal			
Bottom Pin	vss					[@partivame]			
Exclude Inherit	ed Connection Pin	3:							
💌 None 😀	All 😄 Only these	:							
0									
Load/Save 📃	Edit Attrib	utes 📃 Edit L	abels 📃	Edit Prop	er 💶				
			ОК	Cancel Appl	у		 		

Figure Lab2-5 : Symbol Creation

(c) From the symbol window
File → Check & Save
File → Close

- 3. Create a simulation circuit
 - (a) Start another new schematic window and capture the simulation circuit (nswitch_sim) shown in Figure Lab2-6.

Figure Lab2-6 : Simulation Circuit

(b) Instantiate the symbol obtained in Step 2.
 Create → Instance

class (name used in step symbol	1)
Symbol	
	class <i>(name used in step</i> symbol

(c) Add load capacitors Create → Instance

analogLib cap symbol

Capacitance CAP F Initial condition 0 ∨

- (d) Repeat (c) for the other capacitor
- (e) Repeat (c) to instantiate *gnd* from *analogLib* library.
- (f) Complete the connections of the circuit shown in Figure Lab2-6.
- (g) File \rightarrow Check & Save

4. Simulate the Circuit

- (a) Launch Analog Design Environment for simulation Launch \rightarrow ADE L
- (b) Setup the stimulus
 Setup → Stimuli
 set nmos1 to DC 1.2 (Volts)

J <u>e</u> ssion Set <u>up An</u> alyses <u>V</u>	<u>/ariables O</u> utputs <u>S</u> imulation <u>R</u> esu	lts <u>T</u> ools <u>H</u> elp cāde	n c e
Status: F Design Simulator/Directo	nrv/Host		
esign Va Tur <u>b</u> o/Parasitic F	Reduction Ivses		L.
Name <u>M</u> odel Libraries	/pe - Enable	Arguments	
Stim <u>u</u> li	✓ Setup Analog Stimuli		. X
Simulation <u>F</u> iles	Stimulus Type	Global Sources	
MATLAB/Simulir Environment			-
	1 : Select the	desired signal	
	OFF (nmos1)/gnd! Voltag	e bit	
	OFF input /gnd! Voltag	e bit e bit	
		3 : Select	
<u>< (</u>	2 : Enable /	Function	
> Stimuli			=
Sundi	Enabled 🗹 🛛 Function	dc Type Voltage	
	DC voltage	1.2 4. Update Settings	
	AC magnitude		
	AC phase		
	XF magnitude		
	PAC magnitude		
	PAC phase		9
	Temperature coefficient 1		
	Temperature coefficient 2		
	Nominal temperature		
	Source type	de	
	Noise file name		
	Number of poice/free poice	0	
	Freq		
	NOISE 1		
	Fred 2		

Figure Lab2-7: Setup Stimulus

- (c) Click **Apply** to accept the settings of each signal.
- (d) Continue to stimuli setup for the following :-
 - (i) set *nmos2* to **DC** 1.2

(ii) set *input* to **pulse** with *Pulse width* = 20n, *Period* = 40n,*Voltage1* = 0 and *Voltage2* = 1.2

Figure Lab2-8 : Pulse Definition

- (e) Click **OK** when all signals have been setup.
- (f) Setup the analysis to perform
 Analysis → Choose → tran
 set Stop Time to 80n (2 times of period)

❤ Virtuoso® Analog Design Envi	ronment (1) - class lab1 schem	atic		- O X
S <u>e</u> ssion Set <u>u</u> t <u>A</u> nalyses	ariables <u>O</u> utputs <u>S</u> imulat	ion <u>R</u> esults <u>T</u> ools <u>I</u>	<u>H</u> elp	cādence
III Status: Ready Design Variables Name Disable Disable	Analysis Choosing Analyses Virt Analysis Tran	uoso® Analog Design Er dc dc ac sens dcmatch sp envlp pstb pnoise qpss qpac qpsp hb fransient Analysis preset)	nvironment (3) 👝 🗙 C noise C stb C pss C pxf C qpnoise C hbac	AC OC Trans

Figure Lab2-9 : Setup Analysis

(g) Assign values to the variables used in the circuit Variable → Edit → Copy from set CAP to 0.05p set Wn to 120n

Figure Lab2-10 : Edit Variables

- (h) Select signals to be monitored (plotted) graphically
 Outputs → To Be Plotted → Select from Schematic
 Select the wire of input, 01nmos and 02nmos
 - Note : By clicking on the *wire*, the voltage of this wire wrt gnd is being monitored.

Press **ESC** (to avoid toggling effect of unselecting the desired signals)

(j) Run Simulation Simulation → Netlist and Run Account Number: g4[]_[]

Name:____

Submission of Lab2:

- 5. What are the functions of the NMOS transistors *in this circuit ?*
- 6. How does I3 (Figure Lab2-1) affects the voltage of 01nmos?
- 7. Measure the voltage level at *01nmos* and *02nmos*. Explain the difference in voltage between the 2 voltages.

In the Waveform Window

- (a) *Marker* → *Create_Marker* → *Point* → *OK*, then drag the marker to the desired location.
- (b) Place cursor at the highest point of 01nmos and 02nmos.

8. To simulate the circuit with a new set of values

From Analog Environment Window

- (a) **Variable** \rightarrow Edit \rightarrow Wn \rightarrow 300n (change the width of the transistor)
- (b) **Simulation** \rightarrow **Run** (rerun with the new settings)
- 9. What is the effect of changing the width of the N-pass transistors on the voltage of *O1nmos and O2nmos* ? Substantiate your answer with relevant equations.