NOR gate

2-input NOR gate.
Note 1: The order of inputs does not affect its logic equation.

$$
Y=\overline{(A+B)}
$$

EG3010: Microelectronics

Multiple Inputs NOR

Note 2:
You can have more that 2 inputs. Similarly for NAND gate.

$$
\begin{aligned}
& Y=\overline{(A+B)} \\
& Y=\overline{(A+B+C)}
\end{aligned}
$$

NOR and NAND

Note 3:
Top Part (divided by VOUT line) use PMOS and Bottom Part use NMOS.
Note 4: Duality.
If Top Part in series, Bottom Part in parallel.
If Bottom Part in series, Top Part in parallel.
Note 5:
NOR/OR is top series. NAND/AND is bottom series.

DeMorgan's Theorems

You should know DeMorgan's Theorems: Note 6:

$$
\begin{aligned}
& \overline{(\mathrm{A}+\mathrm{B})}=\overline{(\mathrm{A})} \cdot \overline{(\mathrm{B})} \\
& \overline{(\mathrm{A} \cdot \mathrm{~B})}=\overline{(\mathrm{A})}+\overline{(\mathrm{B})}
\end{aligned}
$$

You might need to manipulate the logic equation, before implementation of complex gate.

Conversion back and forth:

$$
\begin{gathered}
\mathrm{A}+\mathrm{B}=\overline{\overline{(\mathrm{A}+\mathrm{B})}}=\overline{\overline{(\mathrm{A})} \cdot \overline{(\mathrm{B})}}=\overline{\overline{(\mathrm{A})}}+\overline{\overline{(\mathrm{B})}}=\mathrm{A}+\mathrm{B} \\
\mathrm{~A} \cdot \mathrm{~B}=\overline{\overline{(\mathrm{A} . \mathrm{B})}}=\overline{\overline{(\mathrm{A})}+\overline{(\mathrm{B})}}=\overline{\overline{(\mathrm{A})}} \cdot \overline{\overline{(\mathrm{B})}}=\mathrm{A} \cdot \mathrm{~B}
\end{gathered}
$$

Example 1: $\mathrm{Y}=\overline{\mathrm{A}+\mathrm{BC}}$

1. This is 2-input NOR \rightarrow top-series.

2. $\mathrm{BC} \rightarrow \mathrm{AND}$, bottom-series

3. Substitute with PMOS and NMOS

Example 2: $\mathrm{Y}=\overline{(\mathrm{A}+\mathrm{BC}+\mathrm{DE})}$

1. This is 3-input NOR \rightarrow top-series.
2. $\mathrm{BC} \rightarrow$ bottom-series DE \rightarrow bottom-series

3. Substitute with PMOS and NMOS

Example 3: $\quad \mathrm{Y}=\overline{(\mathrm{A}+\mathrm{B}) \mathrm{C}+\mathrm{D}}$

1. This is 2-input NOR \rightarrow top-series. 2. (A+B) $C \rightarrow$ AND, bottom-series

2. $(A+B) \rightarrow$ OR, top-series

Example 4: $\quad \mathrm{Y}=\overline{(\mathrm{A}+\mathrm{B}) \cdot \mathrm{C} \cdot(\mathrm{D}+\mathrm{E})}$

1. This is 3-input NAND \rightarrow bottom-series.

2. $(A+B) \rightarrow$ OR, top-series (D+E) \rightarrow OR, top-series

Example 5:
 $Y=\overline{\overline{A+B}} \cdot(C+D E)$

1. This is 2-input NAND \rightarrow bottom-series.

2. $\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}} \rightarrow$ must be converted. AND, bottom-series Note 8: Only AND or OR are allowed under the 1 big bar.

$$
\mathrm{Y}=\overline{\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot(\mathrm{C}+\mathrm{DE})}
$$

3. Negated Inputs are allowed

Example 6: $\quad \mathrm{Y}=\overline{\overline{\mathrm{AB}}+(\mathrm{C}+\mathrm{DE})}$

1. $\overline{\mathrm{AB}}=\overline{\mathrm{A}}+\overline{\mathrm{B}} \rightarrow$ must be converted. Note 8: Only AND or OR are allowed under the 1 big bar.
2. This is 4 -input NAND \rightarrow top-series.
3. $\mathrm{DE} \rightarrow$ AND, bottom-series

$$
Y=\overline{\bar{A}+\bar{B}+C+D E}
$$

4. Order of inputs does not affect logic equation. Both solutions are acceptable

Example 7:
 $\mathrm{Y}=\overline{\mathrm{AB}}+(\mathrm{C}+\mathrm{D})$

1. The equation is not in NAND or NOR form. You need to add 2 bars.
2. This is a 3-input NOR + INVERTER $Y=\overline{\overline{\overline{\mathrm{AB}}+\mathrm{C}+\mathrm{D}}}$
3. $\overline{\mathrm{AB}}=\overline{\mathrm{A}}+\overline{\mathrm{B}} \rightarrow \mathrm{OR}$, top series. must be converted.

Note 8: Only AND or OR are allowed under the 1 big bar.

Example 8:
 $\mathrm{Y}=(\mathrm{A}+\mathrm{B})(\overline{\mathrm{C}}+\overline{\mathrm{D}})$

1. The equation is not in NAND or NOR form. You need to add 2 bars.
2. This a 2-input NAND + INVERTER

$$
Y=\overline{\overline{(A+B)(\bar{C}+\bar{D})}}
$$

