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1 Introduction

The super-regenerative receiver operates on the direct conversion principle where an oscillator can perform RF detection. This
resulted in a low component-count receiver. In comparison, the more commonly used super-heterodyne receiver operates by
mixing the RF signal down to IF for demodulation. The performance is hence better but the tradeoff is a more complex
receiver.

In 1922, Armstrong invented super-regenerative receiver architecture. However, super-regenerative receiver architecture was
progressively abandoned followed his later invention of super-heterodyne receiver architecture, which give better selectivity
and sensitivity performance.

Currently, super-regenerative receives implemented using discrete components are still being used in low cost application
where performance is not critical. The advantages are: low power consumption, simple architecture, small silicon size and
lower cost as external IF filter are not required. The disadvantages are: low data rate, only work on on-off keying, poor
sensitivity and poor selectivity. Hence, it can only serve in niche application where performance is not critical.

Companies such as Telecontrolli and Mipot have products that using super-regenerative principle.

Literatures and papers on principle of super-regenerative receiver are rare. A search through IEEE explorer for the relevant
papers resulted in less than 10 hits. The more relevant are: [1], [2] and [3]. There is only one book that devoured entirely to the
principle of super-regenerative receiver [4].

The papers are very difficult to understand as lots of mathematical derivations and circuit details are hidden.

The principle of operation will not be explained in this report as this will require substantial amount of effort to re-produce lots
of material into the report.

The purpose of the report is to understand the quench waveform on the performance of super-regenerative receiver. In the
process, two analytical equations for linear mode of operation [4] will be compared to the result of circuit simulation.
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2 Overview Of Super-regenerative Receiver
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The LNA provides matching and gain for RF signal. It also provides reverse isolation to prevent the oscillation signal of
oscillator from re-radiate to the air. Envelope detector extracts the envelope of the oscillation signal. After low pass filtering,
data slicer produces the digital waveform.

The quench generator supplies the quench signal for the oscillator. Due to variation of temperature, supply voltage and
processes, it is necessary to have an AGC to maintained the desired operating region of the receiver.
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3 Mode Of Operation

Super-regenerative receiver has two modes of operation: linear and logarithmic.

The figure below shows the linear mode of operation. RF input is a 100% on-off keying signal. The quench signal showed is
trapezoidal-shaped. Different quench waveform will give different performance tradeoff. Waveform such as rectangular, sine,
saw-tooth are possible, though the resulting receiver performances have their own strengths and weaknesses.
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Linear mode is characterized by linear relation between the amplitude of the RF input signal and the amplitude of the envelope.
In this mode, the oscillator does not reach its steady-state during the quench period.
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The figure above shows the logarithmic mode. The logarithmic mode is characterized by a logarithmic relation between the
amplitude of the RF input signal and the amplitude of the demodulated output. In this mode, the oscillator reaches its steady-
state amplitude at each quench cycle.
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4 Quenching Signal

In [4], analytical equations are derived for two quenching signals: sine and square waveform. Note that these equations are
meant for linear-mode only. Sine wave has a sloped zero-crossing whereas square wave has a step zero-crossing.

The core of the super-regenerative receiver is the oscillator, which can be represented as parallel combination of R, L and C in

its simplest form. L and C act as the resonator or tank of the oscillator. G(t) represents the loss of the tank circuit and the
negative conductance provided by active element. RFin is the RF signal represented as a current source.

VOSC

O

When G(t) is positive, oscillation is not possible. When G(t) is negative, oscillation occurs.

The two equations are extracted and simplified for discussion.
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When G(t) is a sine waveform, the equation is:

G(t), Quenching Signal

GO

G1

t2

Vosc = Vrf* po * ut * S * sin[Wo * t + (W-Wo)tl]

Where:
Voltage Amplitude of RF input | Vrf= A/G0 A Current Amplitude of RF input
GO Conductance of Tank

Slope Gain T G’(t1) Rate of Zero Cross of G(t) at t=t1

wo= GO [———

clG'(tn)

Super-regenerative Gain A- C Capacitance of Tank

ut= e A- Area of G(t) <0
Total Gain G=po*ut
Selectivity -4n’C(f—fo )’ f Input Frequency

g i e |G'(tD) fo Tank Resonant Frequency

fo
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When G(t) is a square waveform, the equation is:

G(t), Quenching Signal

GO

G1

tb

Vosc = Vrf* po * ut * S * sin[Wo * t]

Where:
Voltage Amplitude of Vrf=A/GO A Current Amplitude of RF input
RF input GO Conductance of Tank
Step Gain GO + |G1| Gl Peak Negative Conductance
Ho=——""
G
Super-regenerative Gain A- C Capacitance of Tank
ut=e2C A- Area of G(t) <0
Total Gain G=po* ut
Selectivity S= W =2rf
G0G1 Wo =2nfo
4C?
GO\’ G1Y’
\/ (W—-Wo) + (j \/(W —~Wo) + [j
2C C
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5 Comparison

To compare performance of super-regenerative receiver in the linear mode, two quenching signals are generated for
comparison.

The common circuit parameters are:

Parameter Value Remark

L S5nH Inductor value

QL 20 Q factor of Inductor

Fo 1GHz Tank resonation frequency

Fq 2.5MHz Quenching frequency

A 1uA Current amplitude of RF input

The two quenching signals are generated for comparison.
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The parameters for sine quenching signal are:

Parameter Value Remark

GO 1.592m Tank conductance

G’(tl) -30 Zero-crossing rate of G(t) at tl

tl 44 Time of zero-crossing (positive-to-negative transition of G(t)).
2 156 Time of zero-crossing (negative-to-positive transition of G(t)).
Aminu 67p Area of G(t) <0

The parameters for square quenching signal are:

Parameter Value Remark

GO 1.592m Tank conductance

Gl -638u Peak negative conductance
Tb 114ns Build up period

Aminu 75.34p Area of G(t) <0

The respectively total gain (calculated using equations) of super-regenerative receiver using the two quenching signals is:

Sine Square

Total Gain

74.63dB 75.45dB

Note that the total gains are adjusted to almost equal for comparison.
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The selectivity are:
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The result shows that sine quenching signal will have better selectivity. Hence to have good selectivity, the zero-crossing of
G(t) must be sloped.
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Next, the result of using equation and circuit simulation (time domain) are compared.
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The Top-left plot is sine quenching signal using equation and Bottom-left plot is sine quenching signal using circuit simulation.
The results are very closed with only 0.2dB of error.

The Top-right plot is square quenching signal using equation and Bottom-right plot is square quenching signal using circuit
simulation. The results are reasonably closed with 3dB of error.

This confirms that the two equations are very accurate and circuit simulations are correctly done.
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6 Conclusion

The validation of the two equations for linear-mode is done.

To carry on the work, the steps could be:

1  Perform circuit simulation using envelope simulator instead of transient simulator. Transient simulator is not possible
for large circuit. Thus far, the elements used in the circuit simulation are only simple R, L and C. They are only four
of them. With more elements, envelope simulator has to be used.

2 With envelope simulator, design the oscillator. Then investigate its performance for linear and logarithmic mode.
Quenching signal generator must also be designed.

3 With the knowledge gained in step 2, studied the necessity of AGC and design it.

With those steps completed, the essential or the more difficult and uncertain part of the super-regenerative receiver design is
completed.
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7 Simulation Setup (ADS)
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