

Simple MOS Large-Signal Model:

3 regions of operation:

Cutoff Region: $i_D = 0, V_{GS} - V_{TH} < 0$ (ignores subthreshold current)

Linear, Triode, or Non-saturation Region: $i_D = \frac{\mu_o C_{ox} W}{L} \left[(V_{GS} - V_{TH}) - \left(\frac{V_{DS}}{2}\right) \right] V_{DS} , \ 0 < V_{DS} < V_{GS} - V_{TH}$

Active or Saturation Region:

$$i_D = \frac{\mu_o C_{ox} W}{2L} (V_{GS} - V_{TH})^2 , \ 0 < V_{GS} - V_{TH} < V_{DS}$$

 μ_o = surface mobility of the channel for the n-channel or p-channel device (cm²/Volt.Sec) $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$ = capacitance per unit area of the gate oxide (F/cm²) ε_{ox} = permittivity of SiO2 = 3.9*8.854e-14 (F/cm) t_{ox} = oxide thickness

The current equation for Saturation Region is a constant since it is independent of V_{ds} . This is not true in reality. I_D in saturation region is a weak function of drain voltage.

As $V_{DS}\uparrow$, the effective channel-length, L' ,decrease.

Channel Length Modulation:

$$\frac{1}{L'} = \frac{1}{L - \Delta L} = \frac{1}{L} \left(1 + \frac{\Delta L}{L} \right) = \frac{1}{L} \left(1 + \lambda V_{DS} \right)$$
$$\lambda \propto \frac{1}{L}$$

 λ : Channel-length modulation coefficient. It represents the relative variation in length for a given increment in VDS.

With Channel-length Modulation:

$$I_D = \frac{\mu_o C_{ox} W}{2L'} (V_{GS} - V_{TH})^2 = \frac{\mu_o C_{ox} W}{2L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

$$g_m = \mu_o C_{ox} \frac{W}{L} V_{OV} (1 + \lambda V_{DS}) = \sqrt{2\mu_o C_{ox} \frac{W}{L} I_D (1 + \lambda V_{DS})} = \frac{2I_D}{V_{OV}}$$

As $V_{DS} \ge V_b - V_{TH}$, M1 is in saturation. I_D and g_m is relatively constant. As $V_{DS} \ge V_b - V_{TH}$, M1 enter triode region and:

$$g_m = \frac{\partial}{\partial V_{GS}} \left\{ \frac{\mu_o C_{ox} W}{L} \left[(V_{GS} - V_{TH}) - \left(\frac{V_{DS}}{2}\right) \right] V_{DS} \right\} = \mu_o C_{ox} \frac{W}{L} V_{DS}$$

In triode region, as $V_{DS}\downarrow$, $g_m\downarrow$. No gain in triode region.

the

Threshold Voltage, V_{TH}:

Zero bias (V_{BS}=0) threshold voltage: $V_{TH0} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{or}}$

 Φ_{MS} = difference between work functions of the polysilicon gate and the silicon substrate

 $\Phi_{\rm F}$ = strong inversion surface potential (V)

 Q_{dep} = charge in depletion region

Threshold voltage:

 $V_{TH} = V_{TH0} + \gamma \left(\sqrt{|2\Phi_{\rm F} + V_{SB}|} - \sqrt{|2\Phi_{\rm F}|} \right)$

 $\gamma = body$ effect coefficient

Small Signal Model:

An approximation of the large-signal model around the operating point (DC-bias). Channel length modulation \rightarrow I_D varies with V_{DS} \rightarrow Resistor.

$$r_o = \frac{1}{\partial I_D} = \frac{1}{\frac{\mu_o C_{ox} W}{2L} (V_{GS} - V_{TH})^2 \lambda} \approx \frac{1}{\lambda I_D}$$

 R_o , the output impedance will limits the voltage gain of amplifier. $G_m r_o$ is called intrinsic gain of the transistor.

Bulk potential affects threshold voltage and hence the GS overdrive voltage. $g_{mb} = \frac{\partial I_D}{\partial V_{BS}} = \mu_o C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) \left(-\frac{\partial V_{TH}}{\partial V_{BS}} \right) = g_m \frac{\gamma}{2\sqrt{2\Phi_F + V_{SB}}} = \eta g_m$

 $g_m V_{GS}$ and $g_{mb} V_{SB}$ have the same polarity. Raising the gate voltage has the same effect as raising the bulk potential.

